Каучуки

Натрий-бутадиеновый каучук

Натрий-бутадиеновый каучук значительно более стоек и даже может служить защитой для НК120 от вредного действия соединений металлов. Слабая реакционная способность натрий-бутадиенового каучука, объясняемая малым содержанием двойных связей в главной цепи его молекулы, определяет и его относительно высокую стойкость к действию небольших количеств поливалентных металлов.

Натрий-бутадиеновый каучук в Советском Союзе носит название СКБ, что означает синтетический каучук бутадиеновый. Он получается полимеризацией бутадиена в жидкой фазе в присутствии металлического натрия как инициатора. Полимеризация проводится при 40 — — 60 С и 7 — 8 ат. Этот метод полимеризации носит название полимеризации в блоке, или блочной полимеризации.

Натрий-бутадиеновый каучук применяется для изготовления автомобильных камер, эбонита, резиновой обуви, прорезиненных тканей. В процессе эксплуатации изделий отмечается хорошее сопротивление истиранию, высокая эластичность и водостойкость.

Натрий-бутадиеновый каучук получают по схеме: а) полимеризация бутадиена с применением в качестве катализатора металлич. Каучук упаковывается и поступает на склад.

Натрий-бутадиеновый каучук получают, полимеризируя бутадиен в присутствии металлического натрия.

Натрий-бутадиеновый каучук ( СКБ) получают, полимеризуя бутадиен в присутствии металлического натрия.

Натрий-бутадиеновый каучук ( СКВ) является первым каучуком, полученным синтетическим путем по методу акад.

Натрий-бутадиеновый каучук обладает низкими адгезионными свойствами и эластичностью, характеризуется невысокими прочностными свойствами и морозостойкостью по сравнению с натуральным и другими синтетическими каучуками, поэтому в настоящее время он практически не применяется.

Натрий-бутадиеновый каучук значительно более стоек и даже может служить защитой для НК120 от вредного действия соединений металлов. Слабая реакционная способность натрий-бутадиенового каучука, объясняемая малым содержанием двойных связей в главной цепи его молекулы, определяет и его относительно высокую стойкость к действию небольших количеств поливалентных металлов.

Натрий-бутадиеновый каучук СКВ, содержащий 70 % 1 2-звеньев.

В натрий-бутадиеновом каучуке большинство двойных связей приходится на боковые винильные группы, поэтому реакции окисления прекращаются задолго до того момента, когда все двойные связи будут исчерпаны, что существенно отличает окисление этого каучука от окисления натурального. В предельно окисленном натрий-бутадиеновом каучуке, несмотря на то, что кислород участвует не только в присоединении к двойным связям, но и во вторичных реакциях, отношение количества молекул связанного кислорода к числу двойных связей исходного полимера равно 0 65 — 0 70, тогда как при окислении натурального каучука это отношение в полтора-два раза больше.

В ФРГ натрий-бутадиеновый каучук выпускается под маркой б у н а-85. По свойствам он похож на отечественный натрий-бутадиеновый каучук.

Различные типы натрий-бутадиенового каучука отличаются друг от друга по пластичности и механическим свойствам.

Для получения натрий-бутадиенового каучука ( СКВ) в качестве катализатора применяют металлический натрий. СКВ является эластичным материалом желтовато-коричневого цвета.

При вулканизации натрий-бутадиенового каучука на каждый акт присоединения бензтиазолильного радикала приходится около трех актов сшивания. Все эти факты указывают на аналогию вулканизации каучуков перок-сидами и дисульфидами. Диссоциация дибензтиазолилдисульфида на свободные радикалы при нагревании подтверждается его способностью инициировать радикальную полимеризацию метакрило-нитрила при 95 С и изопрена при 125 С.

Процесс вулканизации

Процесс вулканизации каучука можно разделить на холодный и горячий. Первый, может быть разделен на два типа. Первый подразумевает использование полухлористой серы. Механизм вулканизации  с применением этого вещества выглядит таким образом. Заготовку, выполненную из натурального каучука, размещают в парах этого вещества (S2Cl2) или в ее растворе, выполненный на основе какого-либо растворителя. Растворитель должен отвечать двум требованиям:

  1. Он не должен вступать в реакцию с полухлористой серой.
  2. Он должен растворять каучук.

Как правило, в качестве растворителя можно использовать сероуглерод, бензин и ряд других. Наличие полухлористой серы в жидкости не дает каучуку растворяться. Суть этого процесса заключается в насыщении каучука этим химикатом.

Чарльз Гудьир изобрел процесс вулканизации каучука

Длительность процесса вулканизации с участием  S2Cl2 в результате определяет технические характеристики готового изделия, в том числе эластичность и прочность.

Время вулканизации в 2% — м растворе может составлять несколько секунд или минут. Если процесс будет затянут по времени, то может произойти так называемая перевулканизация, то есть заготовки теряют пластичность и становятся очень хрупкими. Опыт говорит о том, что при толщине изделия порядка одного миллиметра операцию вулканизации можно проводить несколько секунд.

Эта технология вулканизации является оптимальным решением для обработки деталей с тонкой стенкой – трубки, перчатки и пр. Но, в этом случае необходимо строго соблюдать режимы обработки иначе, верхний слой деталей может быть вулканизирован больше, чем внутренние слои.

По окончании операции вулканизации, полученные детали необходимо промыть или водой, или щелочным раствором.

Существует и второй способ холодной вулканизации. Каучуковые заготовки с тонкой стенкой, помещают в атмосферу, насыщенную SO2. Через определенное время, заготовки перемещают в камеру, где закачан H2S (сероводород). Время выдержки заготовок в таких камерах составляет 15 – 25 минут. Этого времени достаточно для завершения вулканизации. Эту технологию с успехом применяют для обработки клееных швов, что придает им высокую прочность.

Специальные каучуки обрабатывают с применением синтетических смол, вулканизация с их использованием не отличается от той, что описана выше.

Технологические свойства

В зависимости от условий регулирования процесса полимеризации БНК выпускают с различными пластоэластическими свойствами:

Очень жесткие (твердые) -с жесткость по Дефо 21,5 −27,5 Н или вязкостью по Муни выше 120 усл. ед.;

Жесткие -с жесткостью по Дефо 17,5-21,5 Н или вязкостью по Муни 90-120 усл. ед.;

Мягкие -с жесткостью по Дефо 7,5-11,5 Н или вязкостью по Муни 50-70 усл. ед.

В соответствии с этим к обозначению каучука добавляют букву Т -для очень жестких каучуков или М -для мягких. Для каучуков получаемых в присутствии алкилсульфонатов в качестве эмульгаторов, к обозначению каучука добавляется буква С. Например, СКН-18МС обозначает, что каучук содержит около 18 % связанного НАК, мягкий (за счет пониженном молекулярной массы), получен в присутствии биологически разлагаемого алкилсульфонатного эмульгатора.

Переработка БНК затруднена из-за высокой жесткости, обусловленной большим межмолекулярным взаимодействием. Обрабатываемость каучуков различных марок зависит от их исходной вязкости, а также от содержания нитрильных групп. Для всех каучуков жестких типов необходима предварительная пластикация, причем наиболее эффективна механическая пластикация на вальцах при температуре 30-40 С.

По скорости пластикации БНК могут быть расположены в следующий ряд: СКН-40>СКН-26>СКН-18. Термоокислительная деструкция БНК малоэффективна и не находит практического применения. Существенные трудности возникают при изготовлении резиновых смесей на основе БНК в резиносмесителях, так как при этом вследствие повышенного теплообразования развиваются высокие температуры, которые приводят к повышению жесткости смесей из-за подвулканизации или термоструктурирования каучука.

Обычно применяются многостадийные режимы смешения с охлаждением и вылежкой маточных смесей между стадиями.
Резиновые смеси, на основе БНК обладают незначительной конфекционной клейкостью. Формование смесей затруднено вследствие высокой жесткости и большого эластического восстановления.

Каучуки, полученные низкотемпературной полимеризацией, имеют лучшие технологические свойства по сравнению с каучуками «горячей» полимеризации.

Физические и химические свойства натурального каучука

  • Натуральный каучук — аморфное, способное кристаллизоваться твёрдое тело.
  • Природный необработанный (сырой) каучук — белый или бесцветный углеводород.
  • Он не набухает и не растворяется в воде, спирте, ацетоне и ряде других жидкостей. Набухая и затем растворяясь в жирных и ароматических углеводородах (бензине, бензоле, эфире и других) и их производных, каучук образует коллоидные растворы, широко используемые в технике.
  • Натуральный каучук однороден по своей молекулярной структуре, отличается высокими физическими свойствами, а также технологическими, то есть, способностью обрабатываться на оборудовании заводов резиновой промышленности.

Особенно важным и специфическим свойством каучука является его эластичность (упругость) — способность каучука восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших деформацию.

Каучук — высокоэластичный продукт, обладает при действии даже малых усилий обратимой деформацией растяжения до 1000%, а у обычных твёрдых тел эта величина не превышает 1%. Эластичность каучука сохраняется в широких температурных пределах, и это является характерным его свойством. Но при долгом хранении каучук твердеет.
При температуре жидкого воздуха –195°C он жёсткий и прозрачный; от 0 ° до 10 °C — хрупкий и уже непрозрачный, а при 20 °C — мягкий, упругий и полупрозрачный. При нагреве свыше 50 °C он становится пластичным и липким; при температуре 80 °C натуральный каучук теряет эластичность; при 120 °C — превращается в смолоподобную жидкость, после застывания которой уже невозможно получить первоначальный продукт. Если поднять температуру до 200—250 °C, то каучук разлагается с образованием ряда газообразных и жидких продуктов.

Каучук — хороший диэлектрик, он имеет низкую водо- и газопроницаемость.

  • Каучук не растворяется в воде, щёлочи и слабых кислотах; в этиловом спирте его растворимость небольшая, а в сероуглероде, хлороформе и бензине он сначала набухает, а уж затем растворяется.
  • Легко окисляется химическими окислителями, медленно — кислородом воздуха.
  • Теплопроводность каучука в 100 раз меньше теплопроводности стали.
  • Наряду с эластичностью, каучук ещё и пластичен — он сохраняет форму, приобретённую под действием внешних сил. Пластичность каучука, проявляющаяся при нагревании и механической обработке, является одним из отличительных свойств каучука. Так как каучуку присущи эластические и пластические свойства, то его часто называют пласто-эластическим материалом.
  • При охлаждении или растяжении натурального каучука наблюдается переход его из аморфного в кристаллическое состояние (кристаллизация). Процесс происходит не мгновенно, а во времени. При этом в случае растяжения каучук нагревается за счёт выделяющейся теплоты кристаллизации. Кристаллы каучука очень малы, они лишены чётких граней и определённой геометрической формы.

При температуре около –70 °C каучук полностью теряет эластичность и превращается в стеклообразную массу.

Вообще все каучуки, как аморфные материалы, могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем.

Высокоэластическое состояние для каучука наиболее типично.

Каучук легко вступает в химические реакции с целым рядом веществ: кислородом (O2), водородом (H2), галогенами (Cl2, Br2), серой (S) и другими. Эта высокая реакционная способность каучука объясняется его ненасыщенной химической природой. Особенно хорошо реакции проходят в растворах каучука, в которых каучук находится в виде молекул сравнительно крупных коллоидных частиц.

Почти все химические реакции приводят к изменению физических и химических свойств каучука: растворимости, прочности, эластичности и других. Кислород и, особенно, озон, окисляют каучук уже при комнатной температуре. Внедряясь в сложные и большие молекулы каучука, молекулы кислорода разрывают их на более мелкие, и каучук, деструктурируясь, становится хрупким и теряет свои ценные технические свойства.
Процесс окисления лежит также в основе одного из превращений каучука — перехода его из твёрдого в пластичное состояние.

5.Состав и строение натурального каучука.

Длинную молекулу каучука можно было бы наблюдать непосредственно при помощи современных микроскопов, но это не удаётся, так как цепочка слишком тонка: диаметр её, соответствующий диаметру одной молекулы, составляет примерно две десятимиллионных доли миллиметра. Если макромолекулу каучука растянуть до предела, то она будет иметь вид зигзага, что объясняется характером химических связей между атомами углерода, составляющими скелет молекулы.

Звенья молекулы каучука могут вращаться не беспрепятственно, в любом направлении, а ограниченно –только вокруг одинарных связей. Тепловые колебания звеньев заставляют молекулу изгибаться, при этом концы её в спокойном состоянии сближены.

При растяжении каучука концы молекул раздвигаются и молекулы ориентируются по направлению растягивающего усилия. Если устранить усилие, вызвавшее растяжение каучука, то концы его молекул вновь сближаются и образец принимает первоначальную форму и размеры.

Молекулу каучука можно представить себе как круглую, незамкнутую пружину, которую можно сильно растянуть, разведя её концы. Освобождённая пружина вновь принимает прежнее положение.

Модель молекул каучука: при любом положении молекул в пространстве концы их всегда сближены между собой.

Некоторые исследователи представляют молекулу каучука в виде пружинящей спирали.

Качественный анализ показывает, что каучук состоит из двух элементов – углерода и водорода, то есть относится к классу углеводородов. Первоначально формула каучука была принята С5
Н8
, но она слишком проста для такого сложного вещества, как каучук. Определение молекулярной массы показывает, что она достигает несколько сот тысяч (150000-500000). Каучук, следовательно, природный полимер. Молекулярная формула его (С5
Н8
)n.

Молекула натурального каучука состоит из нескольких тысяч исходных химических групп (звеньев), соединённых друг с другом и находящихся в непрерывном колебательно-вращательном движении. Такая молекула похожа на спутанный клубок, в котором составляющие его нити местами образуют правильно ориентированные участки.

CH2
=C-CH=CH2

|

CH3

Можно считать, что макромолекулы каучука образованы молекулами изопрена. Представим этот процесс схематично. Сначала за счёт разрыва двойных связей происходит соединение двух молекул изопрена:

При этом свободные валентности средних углеродных атомов смыкаются и образуют двойные связи в середине молекул, ставших теперь уже звеньями растущей цепи.

К образовавшейся частице присоединяется следующая молекула изопрена:

(-CH2
-C=CH-CH2
-)n.

|

CH3

Подобный процесс продолжается и далее. Строение образующегося каучука может быть выражено формулой:

Мы уже встречались с полимерами, макромолекулы которых представляют собой длинные цепи атомов. Однако они не проявляют такой эластичности, какую имеет каучук. Чем же объясняется это его особое свойство?

Молекулы каучука, хотя и имеют линейное строение, не вытянуты в линию, а многократно изогнуты, как бы свёрнуты в клубки. При растягивании каучука такие молекулы распрямляются, образец каучука от этого становится длиннее. При снятии нагрузки, вследствие внутреннего теплового движения, звенья молекулы возвращаются в прежнее свёрнутое состояние, размеры каучука сокращаются. Если же каучук растягивать с достаточно большой силой, произойдёт не только выпрямление молекул, но и смещение их относительно друг друга, образец каучука может порваться.

Природных ресурсов натурального каучука недостаточно для того, чтобы полностью удовлетворить быстрорастущую потребность в нём. В настоящее время во всё возрастающих масштабах производится синтетический каучук.

Состав и строение натурального каучука

Природный каучук – это высокомолекулярный углеводород. Его молекулы содержат, так называемые двойные связи, обеспечивающие этому материалу химические свойства каучука

Состав природного каучука может быть описан формулой (C5H8)n, где n может равняться числу от 1000 до 3000. Эта формула говорит о том, что натуральный продукт  – это изопрен.

Состав и строение натурального каучука

Молекула этого материала имеет большую длину, но даже с использованием современных электронных оптических устройств полностью ее рассмотреть не удается. Диаметр каучуковой молекулы равен диаметру одной молекулы. Если ее растянуть до определенного предела, то молекула примет зигзагообразную формулу. Это обеспечивают атомы углерода, которые являются основой этой молекулы. Именно способность этого материала возвращаться в исходное положение обеспечивает такие качества, как прочность и эластичность.

Растяжение каучука приводит к тому, что его молекулы раздвигаются в направлении, приложенного усилия. Если от него избавиться, то молекулы вернуться в первоначальное состояние.

Другими словами, молекулы природного сырья представляют собой пружину и ее можно растянуть до некоего предела. Основной компонент каучука – углеводород, состоящий из атомов углерода и водорода.

Промышленное применение

Наиболее массовое применение каучуков — это производство резин для автомобильных, авиационных и .

Из каучуков изготавливаются специальные резины огромного разнообразия уплотнений для целей тепло-, звуко-, воздухо- и гидроизоляции разъёмных элементов зданий, в санитарной и вентиляционной технике, в гидравлической, пневматической и вакуумной технике.

Прессованием массы, состоящей из каучука, асбеста и порошковых наполнителей, получают паронит — листовой материал для изготовления прокладочных изделий с высокой термостойкостью, работающих в различных средах — вода и водяной пар с давлением до 5 мН/м2 (50 ат) и температурой до 450 °С; нефть и нефтепродукты при температурах 200—400 °С и давлениях 7—4 мН/м2 соответственно; жидкий и газообразный кислород, этиловый спирт и т. д.. Высокие уплотняющие свойства паронита обусловлены тем, что его предел текучести, составляющий около 320 МПа, достигается при стягивании соединения болтами или шпильками, при этом паронит заполняет все неровности, раковины, трещины и другие дефекты уплотняемых поверхностей и герметизирует соединение. Паронит не является коррозионно-активным материалом и хорошо поддается механической обработке, что позволяет легко изготавливать прокладки любой конфигурации, не теряющие своих эксплуатационных качеств в любых климатических условиях — ни в районах с умеренным климатом, ни в тропических и пустынных климатических условиях, ни в условиях Крайнего Севера. Высокая термостойкость паронита позволяет применять его в двигателях внутреннего сгорания. Армируя паронит металлической сеткой для повышения механических свойств, получают ферронит.

Каучуки применяют для электроизоляции, производства медицинских приборов и средств контрацепции.

В ракетной технике синтетические каучуки используются в качестве полимерной основы при изготовлении твёрдого ракетного топлива, в котором они играют роль горючего, а в качестве наполнителя используется порошок селитры (калийной или аммиачной) или перхлората аммония, который в топливе играет роль окислителя.

6.Вулканизация натурального каучука.

Натуральные и синтетические каучуки используются преимущественно в виде резины, так как она обладает значительно более высокой прочностью, эластичность и рядом других ценных свойств. Для получения резины каучук вулканизируют. Многие учёные работали над вулканизацией каучука.

В 1832 году немецкий химик Людерсфорд впервые обнаружил, что каучук можно сделать твёрдым после обработки его раствором серы в скипидаре.

Американский торговец скобяными товарами Чарльз Гудьир был одним из неудачливых предпринимателей, который всю жизнь гнался за богатством. Чарльз Гудьир увлёкся резиновым делом и, оставаясь порой без гроша, настойчиво искал способ улучшить качество резиновых изделий. Гудьир открыл способ получения не липкой прочной и упругой резины путём смешения каучука с серой и нагревания.

В 1843 году Гэнкок независимо от Гудьира так же нашёл способ вулканизировать каучук погружением его в расплавленную серу, а несколько позднее Паркс открыл возможность получения резины обработкой каучука раствором полухлористой серы (холодная вулканизация).

Англичанин Роберт Вильям Томсон, который в 1846 году изобрёл «патентованные воздушные колеса» и ирландский ветеринар Джон Бойд Денлоб, натянувший каучуковую трубку на колесо велосипеда своего маленького сына, не подозревали, что этим положили начало применению каучука в шинной промышленности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector