Устройство для автономного электроснабжения на основе элементов пельтье при реализации эффекта зеебека

Открытие Томаса Зеебека

Томас Зеебек (немецкий физик) в 1821 году, то есть спустя 24 года после обнаружения Вольтом контактной разности потенциалов, провел следующий опыт. Он соединил пластину висмута и меди, а рядом с ними расположил магнитную стрелку. В этом случае, как выше было сказано, никакого тока не возникало. Но стоило ученому поднести пламя горелки к одному из контактов двух металлов, как магнитная стрелка начала поворачиваться.

Теперь мы знаем, что причиной ее поворота стала сила Ампера, создаваемая проводником с током, но на то время Зеебек этого не знал, поэтому он ошибочно предположил, что возникает индуцированная намагниченность металлов в результате разницы температуры.

Правильное объяснения этому явлению было дано несколько лет позже датским физиком Хансом Эрстедом, который указал, что речь идет именно о термоэлектрическом процессе, и по замкнутой цепи идет ток. Тем не менее открытый Томасом Зеебеком термоэлектрический эффект в настоящее время носит его фамилию.

Термоэлектрические свойства металлов.

Эффект Зеебека обычно легче других термоэлектрических эффектов поддается надежным измерениям. Поэтому его обычно и используют для измерения термоэлектрических коэффициентов неизвестных материалов. Поскольку термо-ЭДС определяется свойствами обеих ветвей термопары, одна ветвь должна быть из некоего «опорного» материала, для которого известна «удельная» термо-ЭДС (термо-ЭДС на один градус разности температур). Если одна ветвь термопары находится в сверхпроводящем состоянии, то ее удельная термо-ЭДС равна нулю и термо-ЭДС термопары определяется величиной удельной термо-ЭДС другой ветви. Таким образом, сверхпроводник – идеальный «опорный» материал для измерения удельной термо-ЭДС неизвестных материалов. До 1986 самая высокая температура, при которой металл можно было поддерживать в сверхпроводящем состоянии, составляла лишь 10 К (263° C). В настоящее время сверхпроводники можно использовать приблизительно до 100 К (173° C). При более высоких температурах приходится проводить измерения с несверхпроводящими опорными материалами. До комнатной и несколько более высоких температур опорным материалом обычно служит свинец, а при еще более высоких – золото и платина.См. также СВЕРХПРОВОДИМОСТЬ.

Эффект Зеебека в металлах имеет две составляющие – одна из них связана с диффузией электронов, а другая обусловлена их фононным увлечением. Диффузия электронов вызывается тем, что при нагревании металлического проводника с одного конца на этом конце оказывается много электронов с высокой кинетической энергией, а на другом – мало. Электроны с высокой энергией диффундируют в сторону холодного конца до тех пор, пока дальнейшей диффузии не воспрепятствует отталкивание со стороны избыточного отрицательного заряда накопившихся здесь электронов. Этим накоплением заряда и определяется компонента термо-ЭДС, связанная с диффузией электронов.

Компонента, связанная с фононным увлечением, возникает по той причине, что при нагревании одного конца проводника на этом конце повышается энергия тепловых колебаний атомов. Колебания распространяются в сторону более холодного конца, и в этом движении атомы, сталкиваясь с электронами, передают им часть своей повышенной энергии и увлекают их в направлении распространения фононов – колебаний кристаллической решетки. Соответствующим накоплением заряда определяется вторая компонента термо-ЭДС.

Оба процесса (диффузия электронов и их фононное увлечение) обычно приводят к накоплению электронов на холодном конце проводника. В этом случае удельная термо-ЭДС по определению считается отрицательной. Но в некоторых случаях из-за сложного распределения числа электронов с разной энергией в данном металле и из-за сложных закономерностей рассеяния электронов и колеблющихся атомов в столкновениях с другими электронами и атомами электроны накапливаются на нагреваемом конце, и удельная термо-ЭДС оказывается положительной. Наибольшие термо-ЭДС характерны для термопар, составленных из металлов с удельными термо-ЭДС противоположного знака. В этом случае электроны в обоих металлах движутся в одном и том же направлении.

Список литературы

  1. Шостаковский, П. Термоэлектрические источники альтернативного электропитания. / П. Шостаковский. // Новые технологии. — 2010. № 12. — С. 131-138.
  2. Кропотова Н.А. Аналитический обзор аналогов автономного электроснабжения. // NovaInfo.Ru, 2017. — №58, — Т. 4. – С. 88-93.Баукин, В.Е. 3. Оптимизация параметров термоэлектрических генераторов большой мощности / В.Е. Баукин, А.П. Вялов, И.А. Гершберг, Г.К. Муранов и др. // Термоэлектрики и их применение. Доклады VIII Межгосударственного семинара (ноябрь 2002 г.). СПб: ФТИ, 2002.
  3. Тахистов, Ф.Ю. Оптимизация параметров термоэлектрического генераторного модуля с учетом эффективности теплообмена на сторонах модуля. // Доклады XI Межгосударственного семинара (ноябрь 2008 г.). СПб: ФТИ, 2008.
  4. Пучков П.В. Магнитожидкостное уплотнение подшипника качения. / П.В. Пучков, А.В. Топоров, Н.А. Кропотова, И.А. Легкова. // Сборник научных трудов по материалам Международной научно-практической конференции «Наука и образование в социокультурном пространстве современного общества». В 3-х частях. — Смоленск. 2016. С. 33-35.
  5. Разумов А.А. Оценка потребления количества теплоты в бакелизаторах при изготовлении абразивных изделий на бакелитовой связке. Технологические приемы экономии энергии при термообработке. / А.А. Разумов, Н.А. Кропотова. // Сборник статей по материалам III всероссийской научно-практической конференции с международным участием «Пожарная безопасность: проблемы и перспективы». ИВИ ГПС МЧС России. – Иваново, 2012. С. 312-314.
  6. Киселев В.В. К вопросу защиты металлоконструкций от теплового потока при пожаре. / В.В. Киселев, Н.А. Кропотова, А.А. Покровский, А.Н. Мальцев, И.А. Легкова. // Сборник научных трудов по материалам Международной научно-практической конференции «Наука 21 века: открытия, инновации, технологии». 2016. С. 75-76.
  7. Крылов Е.Н. Расчет селективности при нитровании алкилбензолов в трифторуксусной кислоте. / Е.Н. Крылов, Н.А. Жирова. //
  8. Известия высших учебных заведений. Серия: Химия и химическая технология. — Иваново, 2007. Т. 50. № 1. С. 10-15.

Перспективы использования

Многие специалисты утверждают, что подобные устройства также можно использовать в качестве «интенсификатора теплопередачи». Если необходимо из небольшого пространства отвести теплоту в окружающую среду, а поверхность теплового контакта ограничена тогда располагаемые термоэлектрические батареи могут интенсифицировать процесс теплопередачи.

Важным обстоятельством, определяющим область, в которой термоэлектрические холодильные машины способны конкурировать с другими типами холодильных машин состоит в том, что уменьшение холодопроизводительности ведет к снижению из холодильного коэффициента. Для термоэлектрической холодильной машины это правило не соблюдается и ее эффективность не будет зависеть от холодопроизводительности.

Широкое внедрение термоэлектрического охлаждения будет зависеть от прогресса в создании совершенных полупроводниковых материалов, а также от серийного производства эффективных в экономическом отношении термобатарей.

Рекомендуем изучить: vse-elektrichestvo.ru/novosti/izobretenie-dedala-vibrotramvaj.html.

КПД процесса

Удивительный факт перевода теплоты в электричество открывает большие возможности для применения этого явления. Тем не менее для его технологического использования важна не только сама идея, но и количественные характеристики. Во-первых, как было показано, возникающая ЭДС является достаточно маленькой. Эту проблему можно обойти, если использовать последовательное соединение большого числа проводников (что и делается в ячейке Пельтье, речь о которой пойдет ниже).

Во-вторых, это вопрос эффективности генерации термоэлектричества. И этот вопрос остается открытым по сей день. КПД эффекта Зеебека является чрезвычайно низким (порядка 10 %). То есть из всего затраченного тепла лишь одну десятую его можно будет использовать для совершения полезной работы. Многие лаборатории во всем мире стараются поднять этот КПД, что можно сделать, разработав материалы нового поколения, например, с помощью нанотехнологий.

Термопара.

Если материалы цепи рис. 2 однородны, то термо-ЭДС зависит только от выбранных материалов и от температур спаев. Это экспериментально установленное положение, называемое законом Магнуса, лежит в основе применения т.н

термопары – устройства для измерения температуры, которое имеет важное практическое значение. Если термоэлектрические свойства данной пары проводников известны и один из спаев (скажем, с температурой T1 на рис

2) поддерживается при точно известной температуре (например, 0° C, точке замерзания воды), то термо-ЭДС пропорциональна температуре T2 другого спая. Термопарами из платины и платино-родиевого сплава измеряют температуру от 0 до 1700° C, из меди и многокомпонентного сплава константана – от -160 до +380° C, а из золота (с очень малыми добавками железа) и многокомпонентного хромеля – до значений, лишь на доли градуса превышающих абсолютный нуль (0 К, или -273,16° C).

Термо-ЭДС металлической термопары при разности температур на ее концах, равной 100° C, – величина порядка 1 мВ. Чтобы повысить чувствительность измерительного преобразователя температуры, можно соединить несколько термопар последовательно (рис. 5). Получится термобатарея, в которой один конец всех термопар находится при температуре T1, а другой – при температуре T2. Термо-ЭДС батареи равна сумме термо-ЭДС отдельных термопар.

Поскольку термопары и их спаи могут быть выполнены небольшими и их удобно использовать в самых разных условиях, они нашли широкое применение в устройствах для измерения, регистрации и регулирования температуры.

Общие положения

Графен
H^K=−iℏvFσ→⋅∇→{\displaystyle {\hat {H}}_{K}=-i\hbar v_{F}{\vec {\sigma }}\cdot {\vec {\nabla }}}
  • Физика графена
  • Математическая формулировка …

Основа

  • Квантовая механика
  • Уравнение Дирака
  • Двумерный кристалл
  • Нейтрино
  • (2+1)-мерная КЭД
  • Постоянная тонкой структуры
  • Фаза Берри
  • Углеродные нанотрубки

Фундаментальные понятия

  • История
  • Зонная структура
  • Уравнение Дирака
  • Хиральность
  • Гексагональная решётка
  • Волновая функция
  • Точка электронейтральности
  • e-h лужи
  • Видимость графена
  • Фаза Берри
  • Двухслойный графен

Получение и технология

  • Получение графена
  • Механическое расщепление
  • Химические методы получения
  • Эпитаксия на металлы
  • Подвешенный графен
  • Верхний затвор
  • Перенос графена

Применения

  • Применение графена
  • Графеновый полевой транзистор
  • Графеновые наноленты

Транспортные свойства

  • Электроны и дырки
  • Проводимость
  • Фононы
  • Парадокс Клейна
  • Линза Веселаго
  • 1/f
  • Дробовой шум
  • Случайный телеграфный сигнал
  • p — n переход
  • Ферми-жидкость
  • Термоэлектрический эффект

Магнитное поле

  • Магнетосопротивление
  • Осцилляции Шубникова — де Гааза
  • КЭХ
  • Спиновый квантовый эффект Холла
  • ДКЭХ
  • Осцилляции Вейса
  • Магнетоэкситоны
  • Сверхпроводимость
  • Слабая локализация
  • Эффект Ааронова — Бома

Оптика графена

  • Рамановское рассеяние света
  • α

Известные учёные

  • Андре Гейм
  • Константин Новосёлов
  • Филипп Ким
  • Михаил Кацнельсон
См. также: Портал:Физика

Теоретически как и всякий тепловая машина её эффективность ограничиваться эффективностью цикла Карно, но на практике потери приводят к выражению

η=(1−TcTh)1+zT−11+zT+TcTh{\displaystyle \eta =\left(1-{\frac {T_{c}}{T_{h}}}\right){\frac {{\sqrt {1+zT}}-1}{{\sqrt {1+zT}}+T_{c}/T_{h}}}},

где Tc и Th — холодная и горячая температуры создающие градиент, zT — безразмерный параметр характеризующий преобразование тепла в электричество для конкретного материала. Этот параметр представляется в виде

zT=σS2Tκ{\displaystyle zT={\frac {\sigma S^{2}T}{\kappa }}},

где σ=neμ — проводимость графена, n — концентрация носителей тока (электронов или дырок), e — элементарный заряд, μ — подвижность носителей тока, S — коэффициент Зеебека, T — температура, κ — теплопроводность графена. Для графена теплопроводность складывается из двух вкладов: электронной (κe) и фононной частей (κp). Для повышения эффективности преобразования тепла в электричество в графене нужно увеличить коэффициент Зеебека, проводимость, температуру, но уменьшать теплопроводность. Но эти величины оказываются связаны некоторыми соотношениями, например согласно закону Видемана — Франца проводимость пропорциональна и электронной теплопроводности, а формула Мотта гласит, что при увеличении проводимости уменьшается коэффициент Зеебека. Так как графен амбиполярный материал, то одновременное присутствие уменьшению и дырок приводит к уменьшению коэффициента Зеебека, поэтому для эффективной работы теплопреобразователей нужно иметь конечную концентрацию носителей тока и, задача сводится к попыткам увеличить произведение двух параметров σS2, поскольку уменьшение теплопроводимости обычно достигается внесением дефектов, что в свою очередь уменьшает проводимость.

Использование эффекта, открытого Зеебеком

Несмотря на низкий КПД, он все же находит свое применение. Ниже перечислим основные из областей:

  • Термопара. Эффект Зеебека с успехом используют для измерения температур разных объектов. По сути, система из двух контактов — это и есть термопара. Если известен ее коэффициент S и температура одного из концов, то, измеряя напряжение, которое возникает в цепи, можно вычислить температуру другого конца. Термопары также применяют для измерения плотности лучистой (электромагнитной) энергии.
  • Генерация электричества на космических зондах. Запускаемые человеком зонды для исследования нашей Солнечной системы или космоса за ее пределами используют эффект Зеебека для питания электроники, находящейся на их борту. Осуществляется это благодаря радиационному термоэлектрическому генератору.
  • Применение эффекта Зеебека в современных автомобилях. Компании BMW и Volkswagen заявили о появлении в их автомобилях термоэлектрических генераторов, которые будут использовать тепло газов, выбрасываемых из выхлопной трубы.

Термоэлектрический эффект

Земли можно объяснить термоэлектрическим эффектом, действующим в химически и температурно неоднородной среде коры н мантии. Однако в тридцатые годы и даже во время второй мировой войны атомная физика и физика твердого тела развивались оч нь быстро, и в 1945 г. Эльзассер смог отвергнуть все % томарные процессы в роли источников магнитного поля Земли. Развивавшиеся квантовомеханические методы исследования атомов и молекул сделали очевидным, что высокие температура и давление ц земных недрах скорее подавляют, чем усиливают термо-электриче кий эффект и поэтому он совершенно непригоден для объяснения геомагнитного поля. Исходя из этого, Эльзассер заключил, что единственный из возможных механизмов — это индуцирование токрв и полей движениями в жидком металлическом ядре.

Это явление называется термоэлектрическим эффектом. Его физическая природа достаточно сложна, но упрощенно он объясняется диффузией свободных электронов через рабочий спай из проводника с большим их содержанием в другой проводник, где их меньше. Это явление и используется для измерения температуры.

Термоэлектрические процессы обусловливаются тремя термоэлектрическими эффектами: Зеебека, Пельтье и Томсона, которые обратимы и связаны друг с другом. Одновременно в термоэлектрических устройствах имеют место и необратимые процессы: теплопроводность, обусловленная перепадом температур на слое материала, и процесс выделения тепла Джоуля. Эти явления объясняются тем, что термоэлектрические процессы, в результате которых возникает электрический ток или которые являются результатом прохождения электрического тока по термоэлектрической цепи, сопровождаются обычными процессами, имеющими место в теплообменных аппаратах и электрических цепях.

Еще более сильно проявляется термоэлектрический эффект в термоэлементе из полупроводниковых материалов. Преимущество полупроводниковых термопар состоит в том, что они позволяют при той же разнице температур получать большие электродвижущие силы, чем термопары, выполненные из металлов.

Эффект Томсона, третий термоэлектрический эффект, состоит в выделении или поглощении тепла при пропускании тока через однородный проводник при наличии градиента темпе — ратуры.

Зе-ебеком в 1821 г. термоэлектрический эффект состоит в том, что в цепи проводов, содержащих соединения ( спаи) разнородных металлов, возникает электрический ток, если нагревать одно из соединений.

При каких условиях наблюдается первый термоэлектрический эффект, открытый Зеебеком.

Теоретическое и экспериментальное изучение термоэлектрического эффекта привело к установлению некоторых закономерностей, которые позволили практически использовать этот эффект для измерения температуры.

Этот метод основан на термоэлектрическом эффекте, заключающемся в том, что в замкнутой цепи, состоящей из двух разнородных проводников ( термопар), протекает постоянный электрический ток, при условии разности температур обоих спаев.

Этот способ основан на термоэлектрическом эффекте, смысл которого заключается в том, что в замкнутой цепи, состоящей из двух разнородных проводников ( термопара), при условии перепада температур на спаях проводников возникает постоянный электрический ток.

Термоэлектрические преобразователи основаны на термоэлектрическом эффекте, возникающем в цепи термопары.

Термопара ( а и способ включения прибора в цепь термопары ( б.

Эти преобразователи основаны на термоэлектрическом эффекте, возникающем в цепи термопары.

Термоэлектрические преобразователи основаны на термоэлектрическом эффекте, возникающем в цепи термопары.

В приборах этого вида используется термоэлектрический эффект. Название пирометры, что означает приборы для измерения высоких температур, сохранилось до наших дней по традиции, хотя теперь этими приборами измеряют и очень низкие ( до — 200) температуры.

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования.
Также достоинством является отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Физическое объяснение эффекта

Описанный термоэлектрический эффект является достаточно непростым явлением. Для его понимания рассмотрим систему, состоящую из медного и железного проводников, соединенных между собой

Обратим внимание на процессы, которые происходят в зоне контакта Cu-Fe, которая нагревается. Приобретая дополнительную кинетическую энергию, электроны в области нагрева создают более высокое «давление» электронного газа, поэтому стремятся убежать из нее к более холодному концу контура

Наоборот, контакт Cu-Fe, который охлаждается, вызывает потерю кинетической энергии носителей заряда, это ведет к снижению создаваемого ими давления в зоне контакта. Последний факт приводит к привлечению в холодную область свободных носителей заряда.

Если бы металлы в контакте были одинаковыми, то скорости дрейфа электронов в результате разности температур были бы одинаковыми, а их направления в каждом проводнике — противоположными, то есть никакой разности потенциалов бы не возникло. Но поскольку металлы имеют разную природу, то они различным образом реагируют на нагрев (изменение «давления» электронов и скорость их дрейфа разные для Fe и Cu). В этом и заключается причина появления ЭДС в зоне контакта.

Отметим, что при объяснении физики процесса использовалась аналогия с идеальным газом.

Направление возникающего термотока, а также его величина определяются природой металлов, разницей температур контактов, а также особенностями самой электрической замкнутой цепи.

Если рассмотреть физику процесса для пары металл-полупроводник, то она не будет отличаться от таковой для рассмотренной пары металл-металл. Приложение разности температур к двум контактам металла с полупроводником вызывает в последнем поток электронов (n-тип) или дырок (p-тип) от горячей области к холодной, что приводит к появлению разности потенциалов.

Если не поддерживать разность температур за счет отвода тепла от холодной зоны и его подвода к горячему контакту, то в цепи быстро устанавливается термодинамическое равновесие, и ток прекращает течь.

Электротермический эффект Томсона.

В 1854 У.Томсон (Кельвин) обнаружил, что если металлический проводник нагревать в одной точке и одновременно пропускать по нему электрический ток, то на концах проводника, равноудаленных от точки нагрева (рис. 4), возникает разность температур. На том конце, где ток направлен к месту нагрева, температура понижается, а на другом конце, где ток направлен от точки нагрева, – повышается. Коэффициент Томсона – единственный термоэлектрический коэффициент, который может быть измерен на однородном проводнике. Позднее Томсон показал, что все три явления термоэлектричества связаны между собой уже упоминавшимися выше соотношениями Кельвина.

Возникновение — термоэлектродвижущая сила

Возникновение термоэлектродвижущей силы при контакте двух разнородных металлов, температура спаев которых различна, называется эффектом Зеебека.

Для возникновения термоэлектродвижущей силы необходимо создать разность температур между крайними участками исследуемого образца. С этой целью применяют специальные держатели.

Термоэлектрическая цепь и зонная диаграмма.

Рассмотрим механизм возникновения термоэлектродвижущей силы в полупроводниках и основные характеристики, определяющие термоэлектрогенератор.

Рассмотрим механизм возникновения термоэлектродвижущей силы на примере полупроводника. Для простоты представим себе, что у нас имеется всего лишь одна полупроводниковая проволочка.

Метод термозонда основан на явлении возникновения термоэлектродвижущей силы в полупроводниковой пластине, обладающей градиентом температуры.

Действие термоэлектрических пирометров основано на возникновении термоэлектродвижущей силы при изменении температуры точки спая двух проводников из разнородных металлов.

Схема термопары.

В соответствии с положениями современной физики возникновение термоэлектродвижущей силы объясняется перемещением электронов из одного проводника в другой и выравниванием их внутренних потенциалов. В любом металле электроны проводимости образуют электронный газ, подобный идеальному газу. В связи с неодинаковой плотностью электронного газа в различных металлах его давление также неодинаково. Поэтому при соприкосновении металлов электроны из металла с большим давлением электронного газа стремятся в металл с меньшим давлением, что приводит к избытку положительного электричества в одном металле и отрицательного в другом.

Ниже дается несколько упрощенное представление о возникновении термоэлектродвижущей силы, полностью оправдываемое практикой.

В § 13 главы I был рассмотрен вопрос о механизме возникновения термоэлектродвижущих сил и показано, что в явлении Зеебека осуществляется непосредственный переход тепловой энергии в электрическую в термоэлектрических ветвях.

Явления Пельтье и Томсона имеют те же физические основания, что и возникновение термоэлектродвижущей силы. Последнее явление возникает в конечном счете по той причине, что тепловой поток переносит электрические заряды. Здесь же мы имеем явления, в которых поток электрических зарядов несет с собой тепло.

Явления Пельтье и Томсона имеют те же физические основания, что и возникновение термоэлектродвижущей силы. Последнее явление возникает в конечном счете по той причине, что тепловой поток переносит электрические заряды. Здесь же мы имеем явления, в которых поток электрических зарядов несет с собой тепло.

Пожарный извещатель представляет собой термобатарею, состоящую из соединенных последовательно хромель-копелевых термопар, его действие основано на возникновении термоэлектродвижущей силы в термопарах при наличии разности температур малоинерционных и инерционных спаев.

Принцип термопар основан на явлении термоэлектрического эффекта. Возникновение термоэлектродвижущей силы ( термоЭДС) происходит вследствие того, что концентрация свободных электронов в металлах термоэлектродов термопар при одной и той же температуре различна для разных металлов.

Ячейка Пельтье

Когда говорят о петентах на термо генераторные модули с эффектом Зеебека, то, конечно же, первым делом вспоминают про ячейку Пельтье. Она представляет собой компактное устройство (4x4x0,4 см), изготовленное из ряда последовательно соединенных проводников n- и p-типа. Изготовить ее можно своими руками. Эффекты Зеебека и Пельтье лежат в основе ее работы. Напряжения и токи, с которыми она работает, невелики (3-5 В и 0,5 A). Как было сказано выше, КПД ее работы очень маленький (≈10 %).

Применяется она для решения таких бытовых задач, как нагрев или охлаждение воды в кружке или подзарядка мобильного телефона.

Применение

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, малогабаритных автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессорной холодильной установки в этом случае невозможно или нецелесообразно из-за габаритных ограничений, и, кроме того, требуемая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийных холодильников и до −120 °C для двухстадийных).

Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота. До азотного охлаждения использовали именно такой способ.

«Электрогенератор Пельтье» (более корректно было бы «генератор Зеебека», но неточное название устоялось) — модуль для генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:

  1. непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
  2. источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector