Коррозия металлов

Атмосферная коррозия меди

В атмосферных условиях медь отличается высокой коррозионной стойкостью. На сухом воздухе поверхность меди почти не меняется. А при контакте с влажным воздухом образуется нерастворимая пленка, состоящая с продуктов коррозии меди типа CuCO3•Cu(OH)2.

2Cu + H2O + CO2 + O2 → CuCO3•Cu(OH)2.

В зависимости от состава среды и еще многих факторов  на медной поверхности в атмосфере сначала образуется очень тонкая защитная пленка, состоящая с оксидов меди и ее чистой закиси. Время образования этой пленки может достигать нескольких лет. Поверхность немного темнеет, становится коричневатой. Иногда пленка может быть почти черного цвета (во многом зависит от состава коррозионной среды). После образования оксидного слоя на поверхности начинают скапливаться соли меди, имеющие зеленоватый оттенок. Образующийся оксид меди и соли называют еще патиной. Цвет патины колеблется от светло коричневого, до черного и зеленого. Зависит от качества обработки поверхности, состава самого металла и среды, времени контакта с коррозионной средой (от внутренних и внешних факторов). Закись меди – красно-коричневого цвета, окись – черного. Голубые, зеленые, синие и другие оттенки патины обуславливаются различными медными минералами (сульфаты, карбонаты, хлориды и др.). Патина по отношению к основному металлу нейтральна, т.е. не оказывает на медь вредного влияния (кроме хлористой меди). Соли и оксиды, формирующие патину, нерастворимы в воде и обладают естественными декоративными, защитными свойствами по отношению к поверхности меди.

Присутствие во влажном воздухе углекислого газа приводит к образованию на поверхности смеси, которую еще называют малахитом. Сульфиды, хлориды, находящиеся в воздухе, разрушают малахит. Это ускоряет атмосферную коррозию меди.

2 Электрохимическая коррозия и коррозионный элемент – что это?

Такая коррозия признается наиболее распространенной. Появляется она в том случае, когда среда, характеризуемая электролитической проводимостью, взаимодействует с металлом. Другими словами, ее первопричиной можно смело называть неустойчивость (термодинамическую) металлов в средах, где они находятся. Известные любому человеку примеры такой коррозии – ржавление на открытом воздухе конструкций и изделий из чугуна и разных марок стали (высоколегированной стали, углеродистые стали и так далее), днищ судов в морской воде, инженерных коммуникаций и трубопроводов, по которым транспортируются разнообразные жидкости и агрессивные составы.

Коррозионный элемент (его обычно называют гальваническим) образуется тогда, когда два металла, имеющие разные потенциалы (окислительно-восстановительные), соприкасаются. Такой элемент – это обычная гальваническая ячейка замкнутого типа. В указанной ячейке металл с меньшим потенциалом медленно растворяется, а второй компонент (с большим потенциалом) обычно не изменяет своего состояния.

Подобным изменениям чаще всего подвергаются металлы, у которых величина отрицательного потенциала высока. В них процесс ржавления (формирования коррозионного компонента) начинается уже тогда, когда на поверхность попадает малый объем постороннего включения.

Другие электрохимические явления и методы.

При относительном движении электролита и заряженных частиц или поверхностей возникают электрокинетические эффекты. Важным примером такого рода является электрофорез, при котором происходит разделение заряженных частиц (например, молекул белка или коллоидных частиц), движущихся в электрическом поле. Электрофоретические методы широко используют для разделения белков или дезоксирибонуклеиновых кислот (ДНК) в геле. Электрические явления играют большую роль в функционировании живых организмов: они отвечают за генерацию и распространение нервных импульсов, возникновение трансмембранных потенциалов и т.д. Различные электрохимические методы применяются для изучения биологических систем и их компонентов. Представляет интерес и изучение действия света на электрохимические процессы. Так, предметом фотоэлектрохимических исследований являются генерация электрической энергии и инициация химических реакций под действием света, что весьма существенно для повышения эффективности преобразования солнечной энергии в электрическую. Здесь обычно используются полупроводниковые электроды из диоксида титана, сульфида кадмия, арсенида галлия и кремния. Еще одно интересное явление – электрохемилюминесценция, т.е. генерация света в электрохимической ячейке. Оно наблюдается, когда на электродах образуются высокоэнергетические продукты. Часто процесс проводят в циклическом режиме, чтобы получить как окисленную, так и восстановленную формы данного соединения. Взаимодействие их между собой приводит к образованию возбужденных молекул, которые переходят в основное состояние с испусканием света.

Прикладная электрохимия.

Электрохимия имеет много практических применений. При помощи первичных гальванических элементов (элементов одноразового действия), соединенных в батареи, преобразуют химическую энергию в электрическую. Вторичные источники тока – аккумуляторы – запасают электрическую энергию. Топливные элементы – первичные источники тока, которые генерируют электричество благодаря непрерывной подаче реагирующих веществ (например, водорода и кислорода). Эти принципы лежат в основе портативных источников тока и аккумуляторов, применяющихся на космических станциях, в электромобилях и электронных приборах.

На электрохимическом синтезе основано крупнотоннажное производство многих веществ. При электролизе рассола в хлор-щелочном процессе образуются хлор и щелочь, которые затем применяются для получения органических соединений и полимеров, а также в целлюлозно-бумажной промышленности. Продуктами электролиза являются такие соединения, как хлорат натрия, персульфат, перманганат натрия; электроэкстракцией получают важные в промышленном отношении металлы: алюминий, магний, литий, натрий и титан. В качестве электролитов лучше использовать расплавы солей, поскольку в этом случае, в отличие от водных растворов, восстановление металлов не осложняется выделением водорода. Электролизом в расплаве соли получают фтор. Электрохимические процессы служат основной для синтеза некоторых органических соединений; например, гидродимеризацией акрилонитрила получают адипонитрил (полупродукт в синтезе найлона).

Широко практикуется нанесение на различные предметы гальванических покрытий из серебра, золота, хрома, латуни, бронзы и других металлов и сплавов с целью защиты изделий из стали от коррозии, в декоративных целях, для изготовления электрических разъемов и печатных плат в электронной промышленности. Электрохимические методы используются для высокоточной размерной обработки заготовок из металлов и сплавов, особенно таких, которые не удается обрабатывать обычными механическими способами, а также для изготовления деталей сложного профиля. При анодировании поверхности таких металлов, как алюминий и титан, образуются защитные оксидные пленки. Такие пленки создают на поверхности заготовок из алюминия, тантала и ниобия при изготовлении электролитических конденсаторов, а иногда в декоративных целях.

На электрохимических методах часто базируются исследования коррозионных процессов и подбор материалов, замедляющих эти процессы. Коррозию металлических конструкций можно предотвратить с помощью катодной защиты, для чего внешний источник подсоединяют к защищаемой конструкции и аноду и поддерживают такой потенциал конструкции, при котором ее окисление исключается. Исследуются возможности практического применения других электрохимических процессов. Так, для очистки воды можно использовать электролиз. Весьма перспективное направление – преобразование солнечной энергии с помощью фотохимических методов. Разрабатываются электрохимические мониторы, принцип действия которых основан на электрохемилюминесценции. Упомянем также об изучении обратимого изменения окраски поверхности электродов в результате электродных реакций.

Вольтамперометрия.

Все разновидности вольтамперометрических методов используют рабочий микроэлектрод с площадью поверхности 10–7–10–1 см2. Получаемые с его помощью вольтамперные кривые позволяют идентифицировать растворенные вещества, определить их концентрацию, а нередко – термодинамические и кинетические параметры. Первый вольтамперометрический метод – полярография – был предложен в 1922 чешским химиком Я.Гейровским. Рабочим электродом в его установке служил капающий ртутный электрод. Ртуть имеет высокое водородное перенапряжение, поэтому ртутный электрод удобен для изучения процессов, протекающих при отрицательных потенциалах. Поверхность электрода постоянно обновляется в процессе измерения, что исключает загрязнение электрода. Вольтамперометрические исследования проводятся также с помощью твердых электродов, например из платины и углерода, и используются процессы, протекающие при положительных потенциалах. В вольтамперометрии с линейной разверткой потенциала (хроноамперометрии) задают линейное изменение потенциала во времени и раствор не перемешивают, так что массоперенос происходит исключительно благодаря диффузии. При циклической вольтамперометрии к электроду прикладывают повторяющиеся импульсы напряжения треугольной формы. Вещества, образующиеся на восходящем участке цикла, исследуются на нисходящем его участке. Такой метод особенно эффективен для изучения механизма электродных реакций путем анализа поляризационных кривых при разных скоростях развертки потенциала и разных концентрациях раствора. Существуют и другие виды вольтамперометрии – дифференциальная импульсная и квадратно-волновая, – при которых на линейно растущий потенциал налагаются импульсы напряжения разной формы. Эти методы широко используются для определения малых концентраций веществ в растворе. Если в ходе вольтамперометрического измерения раствор перемешивается, а значит, массоперенос осуществляется одновременно с помощью конвекции и диффузии, то говорят о гидродинамической вольтамперометрии. В этом случае удобно использовать вращающийся дисковый электрод, поскольку экспериментальные вольт-амперные кривые можно прямо сопоставить с теоретическими.

Электрохимическая коррозия

— наиболее распространённый видом разрушения металлов. Примером электрохимической коррозии является, например, разрушение деталей машин, приборов и различных металлических конструкций в почвенных, грунтовых, речных и морских водах, в атмосфере, под пленками влаги, в технических растворах, под действием смазочно-охлаждающих жидкостей и т.д. Как уже было отмечено, электрохимическая коррозия протекает на поверхности металлов под действием электрических токов, то есть происходят окислительно-восстановительные химические реакции, характеризующиеся отдачей электронов и их переносом, так как образуются катодные и анодные участки. Образованию катодов и анодов способствуют химическая неоднородность металлов (примеси и включения), наличие участков остаточной деформации, неоднородность покрывающих металл защитных плёнок и т.д. Наиболее часто в образовании данного вида разрушения металла участвуют не один фактор, а несколько. Когда метал начинает корродировать, он превращается в многоэлектронный гальванический элемент.

Например, рассмотрим что происходит, если медь Cu контактирует с железом Fe в среде электролита. Такая система представляет собой гальванический элемент, где железо — анод («+»), а медь — катод. Железо отдает электроны меди и переходит в раствор в виде ионов. Ионы водорода движутся к меди, где разряжаются. Катод постепенно становится более отрицательным, в конце-концов становится равным потенциалу анода и коррозия замедляется.

Как раз на эту тему можно провести опыт в домашних условиях. Нам потребуется три стакана с раствором поваренной соли (пищевая соль), 3 железных гвоздя, кусочек цинка и медная проволока (без изоляции). Итак, приступим. Первый гвоздь опустите в стакан с раствором соли. Ко второму гвоздю прикрутите медную проволоку, а к третьему — кусочек цинка. Затем опустите каждый гвоздь в свой стакан с раствором соли (их было 3) и оставьте их на 2-3 суток.

Что происходит: все наши гвозди будут иметь следы ржавчины (коррозии). В самом худшем состоянии будет тот гвоздь, который находился в растворе вместе с медной проволокой, а меньше всего корродировал тот, который привязан к цинку! Объяснение: все металлы обладают разной способностью отдавать электроны. Сравнить их в этой способности можно, ознакомившись с рядом напряжений металлов:

Li← K← Rb← Cs← Ba← Ca← Na← Mg← Al← Mn← Cr← Zn← Fe← Cd← Co← Ni← Sn← Pb← H2← Cu← Ag← Hg← Pt← Au

Те металлы, которые в ряду напряжений находятся левее (например Zn — цинк находится левее Fe — железа), легче отдают свои электроны, чем металл справа (например Cu — медь правее Fe — железа). А значит, как только оба металла попадают в электролит (проводник тока- раствор соли), то сразу образуют гальваническую пару. Более активный металл (стоящий левее) заряжается положительно, а менее активный — отрицательно.

Вернёмся к нашему опыту: тоже самое произошло и в наших стаканах с растворами. Железо (Fe) стоит левее, чем медь (Cu), поэтому оно заряжается положительно, при этом быстро окисляясь. В стакане с цинком — цинк (Zn) — более активный, чем железо. Поэтому, пока весь цинк не поржавеет, железо не разрушится (чем часто пользуются в технических целях).

Виды электрохимической обработки

Электрохимическая обработка металлов проводится в соответствии с назначенными параметрами образца в зависимости от свойств имеющейся заготовки металла. Основными видами воздействия электрохимии на металл являются:

  • Электрохимическое объемное копирование – при этом форма электрода копируется на заготовку металла;
  • Прошивание – электрод углубляется и создает отверстие с постоянным сечением в заготовке;
  • Струйное прошивание – заключается в создании отверстия специальной струей электролита;
  • Калибрование – обычная обработка поверхности изделия для увеличения уровня прочности;
  • Точение происходит за счет вращения заготовки металла и воздействия электролита;
  • Резка заготовки;
  • Удаление заусенцев.

Кроме того, выделяют еще 4 вида проведения самой обработки:

  • Многоэлектродная обработка должна проводиться с использованием нескольких электродов, которые имеют общий доступ к источнику питания;
  • Непрерывная обработка – подача тока на заготовку носит постоянный характер;
  • Импульсная обработка – подача тока проводится с определенной периодичностью;
  • И циклическая обработка, при ней электрод перемещается с заданным ритмом.

4 Что представляет собой химическая коррозия?

Под таким явлением понимают разрушение металла, вызываемое контактом коррозионной среды и материала. Причем при подобном взаимодействии наблюдается сразу два процесса:

  • коррозионная среда восстанавливается;
  • металл окисляется.

Электрохимическая коррозия металлов отличается от химической тем, что последняя протекает без электротока. А первопричина этих видов коррозии, коей является термодинамическая неустойчивость, остается неизменной. Металлы легко переходят в разные состояния (включая и более устойчивые), причем в этом случае отмечается снижение их термодинамического потенциала.

Существуют далее приведенные виды химкоррозии:

  • в жидких составах, которые не причисляются к электролитами;
  • газовая.

К жидкостям-неэлектролитам относят составы неспособные проводить электроток:

  • неорганические: сера в расплавленном состоянии, жидкий бром;
  • органические: бензин, керосин, хлороформ и иные.

Неэлектролиты в чистом виде с металлами не контактируют. Но при появлении в жидкостях совсем малого числа примесей сразу же «стартует» химическая коррозия металлов (причем весьма бурная). В тех ситуациях, когда реакция проходит еще и при повышенных температурах, ржавление будет происходить намного интенсивнее. А если в неэлектролитические жидкости попадает вода, запускается механизм электрохимической коррозии, описанный нами выше.

Процесс ржавления (химического) чаще всего идет в пять этапов:

  • сначала к поверхности металла подходит окислитель;
  • на поверхности стартует хемосорбция реагента;
  • после этого начинает формироваться оксидная пленка (взаимодействие металла и окислителя);
  • отмечается десорбция материала и оксидов;
  • фиксируется диффузия в жидкость-неэлектролит оксидов.

Два этапа, указанные последними, отмечаются не каждый раз.

Химическая коррозия в жидкостях-неэлектролитах

Жидкости-неэлектролиты — это жидкие среды, которые не являются проводниками электричества. К ним относятся:  органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые  неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется.  Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород — химическая коррозия усилится.

Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.

Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:

— подход окислителя к поверхности металла;

— хемосорбция реагента на поверхности;

— реакция окислителя с металлом (образование оксидной пленки);

— десорбция оксидов с металлом (может отсутствовать);

— диффузия оксидов в неэлектролит (может отсутствовать).

Описание процесса

Электрохимическая коррозия — это процесс, который протекает при обязательном присутствии:

  • электролита;
  • металлов с низким и высоким окислительно-восстановительными потенциалами (электродные потенциалы).

Электролит образуют вода, конденсат, любые природные осадки. Наличие двух видов металла практически не бывает всегда, и обусловлено двумя факторами:

  1. Неоднородностью изделия, то есть наличием инородных включений.
  2. Непосредственным касанием изделий из различных металлов.

В электролите неоднородные металлы образуют короткозамкнутый гальванический элемент, называемый коррозионным. Такое сочетание приводит к растворению металла с более низким электродным потенциалом, что и называют электрохимической коррозией. Скорость этого процесса сильно зависит от наличия солей в растворе и его температуры.

Катодная защита от коррозии

Катодная электрохимическая  защита от коррозии применяется тогда, когда защищаемый металл не склонен к пассивации. Это один из основных видов защиты металлов от коррозии. Суть катодной защиты состоит в приложении к изделию внешнего тока от отрицательного полюса, который поляризует катодные участки коррозионных элементов, приближая значение потенциала к анодным. Положительный полюс источника тока присоединяется к аноду.  При этом коррозия защищаемой конструкции почти сводится к нулю. Анод же постепенно разрушается и его необходимо периодически менять.

Существует несколько вариантов катодной защиты: поляризация от внешнего источника электрического тока; уменьшение скорости протекания катодного процесса (например, деаэрация электролита); контакт с металлом, у которого потенциал свободной коррозии в данной среде более электроотрицательный (так называемая, протекторная защита).

Поляризация от внешнего источника электрического тока используется очень часто для защиты сооружений,  находящихся в почве, воде (днища судов и т.д.). Кроме того данный вид коррозионной защиты применяется для цинка, олова, алюминия и его сплавов, титана, меди и ее сплавов, свинца, а также высокохромистых, углеродистых, легированных (как низко так и высоколегированных) сталей.

Внешним источником тока служат станции катодной защиты, которые состоят из выпрямителя (преобразователь), токоподвода к защищаемому сооружению, анодных заземлителей, электрода сравнения и анодного кабеля.

Катодная защита применяется как самостоятельный, так и дополнительный вид коррозионной защиты.

Главным критерием, по которому можно судить о  эффективности катодной защиты, является защитный потенциал. Защитным называется потенциал, при котором скорость коррозии металла в определенных условиях окружающей среды принимает самое низкое (на сколько это возможно) значение.

В использовании катодной защиты есть свои недостатки. Одним из них является опасность перезащиты. Перезащита наблюдается при большом смещении потенциала защищаемого объекта в отрицательную сторону. При этом выделяется. В результате – разрушение защитных покрытий, водородное охрупчивание металла, коррозионное растрескивание.

Виды электрохимической обработки

Электрохимическое объемное копирование — Электрохимическая обработка, при которой форма электрода-инструмента отображается в заготовке

Электрохимическое прошивание — Электрохимическая обработка, при которой электрод-инструмент, углубляясь в заготовку, образует отверстие постоянного сечения

Струйное электрохимическое прошивание — Электрохимическое прошивание с использованием сформированной струи электролита

Электрохимическое калибрование — Электрохимическая обработка поверхности с целью повышения её точности

Электрохимическое точение — Электрохимическая обработка, при вращении заготовки и поступательном перемещении электрода-инструмента

Электрохимическая резка — Электрохимическая обработка, при которой заготовка разделывается на части

Электрохимическое удаление заусенцев (ЭХУЗ, Electrochemical debuting) — Электрохимическая обработка, при которой удаляются заусенцы заготовки

Электрохимическое маркирование

Многоэлектродная электрохимическая обработка — Электрохимическая обработка осуществляемая электродами, подключенными к общему источнику питания электрическим током и находящимися во время обработки под одним потенциалом

Непрерывная электрохимическая обработка — Электрохимическая обработка при непрерывной подаче напряжения на электроды

Импульсная электрохимическая обработка — Электрохимическая обработка при периодической подаче напряжения на электроды

Циклическая электрохимическая обработка — Электрохимическая обработка, при которой один из электродов перемещается в соответствии с заданной циклограммой,

а также другие смешанные виды электрофизикохимической обработки (ЭФХМО) включающие ЭХО:[источник не указан 580 дней]

  • анодно-механическая обработка;
  • электрохимическая абразивная обработка;
  • электрохимическое шлифование;
  • электрохимическая доводка (ЭХД);
  • электрохимическое абразивное полирование;
  • электроэрозионнохимическая обработка (ЭЭХО);
  • электрохимическая ультразвуковая обработка и др.

Оксидирование своими руками

Организовать процесс оксидирования небольших металлических изделий можно в домашней лаборатории. При точном соблюдении последовательности технологических операций добиваются качественного оксидирования.

Весь процесс следует разделить на три этапа:

  1. Подготовительный этап (включает подготовку необходимого оборудования, реактивов, самой детали).
  2. Этап непосредственного оксидирования.
  3. Завершающий этап (удаление вредных следов химического процесса).

На подготовительном этапе проводят следующие работы:

  • Грубая зачистка поверхности (применяется щётка по металлу, наждачная бумага, полировочная машина с соответствующими дисками).
  • Окончательная механическая полировка поверхности.
  • Снятие жирового налёта и остатков полировки. Его называют декопирование. Он проводится в пяти процентном растворе серной кислоты. Время пребывания обрабатываемой детали в растворе равно одной минуте.
  • Промывание детали. Эту процедуру проводят в тёплой кипячёной воде. Целесообразно её провести несколько раз.
  • Завершающей операцией является так называемое пассирование. Вымытую после обработки деталь, помещают чистую кипячёную воду, в которой предварительно растворяют хозяйственное мыло. Этот раствор вместе с деталью подогревают и доводят до состояния кипения. Процедуру кипения продолжают в течение нескольких минут.

Оксидирование в домашних условиях

На этом предварительный этап заканчивается.

Основной этап оксидирования состоит из следующих операций:

  1. В нейтральную посуду (лучше с эмалированным покрытием), заливается вода. В ней растворяют около едкий натр. Объём вещества зависит от количества воды. Целесообразно получить раствор около 5 процентов.
  2. В полученный раствор полностью погружают обрабатываемую деталь.
  3. Раствор с погруженной деталью нагревают до 150 градусов. Практически это процесс кипячения. Он продолжается примерно два часа. Используя инструмент, проверяют качество процесса. Если необходимо время может быть увеличено.

На завершающем этапе с деталью производят следующие операции:

  1. Деталь извлекают из ванны с реактивом.
  2. Укладывают на ровную поверхность, дают её остыть естественным образом (без принудительного охлаждения). Желательно создать условия, ограничивающие контакт с окружающим воздухом.
  3. Визуально проверяют качество полученного оксидирования. Отсутствие непокрытых участков, плотность образованной плёнки, итоговый цвет.

Таким образом, проводить оксидирование можно и в домашних условиях. Главное, соблюдать указанные рекомендации.

Электрохимические ячейки.

Электрохимическая ячейка обычно состоит из двух полуэлементов, каждый из которых представляет собой электрод, погруженный в свой электролит. Электроды изготавливают из электропроводящего материала (металла или углерода), реже из полупроводника. Носителями заряда в электродах являются электроны, а в электролите – ионы. Являющийся электролитом водный раствор поваренной соли (хлорида натрия NaCl) содержит заряженные частицы: катионы натрия Na+ и анионы хлора Cl–. Если поместить такой раствор в электрическое поле, то ионы Na+ будут двигаться к отрицательному полюсу, ионы Cl– – к положительному. Расплавы солей, например NaCl, тоже электролиты. Электролитами могут быть и твердые вещества, например b-глинозем (полиалюминат натрия), содержащий подвижные ионы натрия, или ионообменные полимеры.

Полуэлементы разделяются перегородкой, которая не мешает движению ионов, но предотвращает перемешивание электролитов. Роль такой перегородки может выполнять солевой мостик, трубка с водным раствором, закрытая с обоих концов стекловатой, ионообменная мембрана, пластина из пористого стекла. Оба электрода электролитической ячейки могут быть погружены в один электролит.

Электрохимические ячейки бывают двух типов: гальванические элементы и электролитические ячейки (электролизеры). В гальваническом элементе химические реакции протекают самопроизвольно на границе раздела электрод/электролит, а электроды соединены друг с другом проводником. Несколько гальванических элементов, соединенных последовательно, образуют батарею – химический источник тока. В электролитической ячейке реакции на границе раздела электрод/электролит протекают за счет внешнего источника электрической энергии; последняя превращается в химическую энергию продуктов реакций, протекающих на электродах. Устройство гальванического элемента представлено на рис. 1, а электролизера – на рис. 2. Отметим, что одна и та же ячейка в зависимости от режима работы может вести себя то как гальванический элемент, то как электролизер. Так, автомобильный свинцовый аккумулятор действует как гальванический элемент, когда используется для запуска двигателя (при этом он разряжается), и как электролизер, когда заряжается от автомобильного генератора или от зарядного устройства.

Простой гальванический элемент, созданный в 1836 Дж.Даниелем (рис. 1), состоит из двух электродов: цинкового, погруженного в водный раствор сульфата цинка, и медного, погруженного в водный раствор сульфата меди (II). Такой элемент аналогичен медно-цинковым пáрам в вольтовом столбе. При замкнутой внешней цепи атомы цинка на поверхности цинкового электрода окисляются до ионов с высвобождением электронов: Zn Zn2+ + 2e– . Эти электроны перемещаются по внешней цепи на медный электрод и восстанавливают ионы меди до атомов: Cu2+ + 2e– Cu. Поток электронов во внешней цепи – это и есть ток, вырабатываемый элементом. Суммарная реакция, приводящая к химическому превращению и к генерации электрической энергии, имеет вид

Точно такая же реакция протекает при добавлении металлического цинка в раствор сульфата меди, но в этом случае химическая энергия переходит в тепловую.

Электрохимические ячейки часто представляют схематически, обозначая границу между электродом и электролитом вертикальной или косой чертой (| или /), а солевой мостик – двумя косыми черточками (//). Так, гальваническому элементу на рис. 1 отвечает запись

где M – молярная концентрация раствора.

В электролитической ячейке, изображенной на рис. 2, протекают те же реакции, что и в промышленных электролизерах для получения хлора и щелочи: превращение рассола (концентрированного водного раствора хлорида натрия) в хлор и гидроксид натрия NaOH:

Хлорид-ионы на графитовом электроде окисляются до газообразного хлора, а вода на железном электроде восстанавливается до водорода и гидроксид-иона. Электролиты остаются электронейтральными благодаря перемещению ионов натрия через перегородку – ионообменную мембрану. Электрод, на котором осуществляется окисление (цинк на рис. 1 и графит на рис. 2), называется анодом, а электрод, на котором происходит восстановление, – катодом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector