Цинк (zn) в таблице менделеева имеет порядковый номер 30

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

— Что такое ион читайте в статье.

Перейти к другим элементам таблицы менделеева

1
H
1.008



































2
He
4.003

3
Li
6.938

4
Be
9.012























5
B
10.806

6
C
12.01

7
N
14.006

8
O
15.999

9
F
18.998

10
Ne
20.18

11
Na
22.99

12
Mg
24.304























13
Al
26.982

14
Si
28.084

15
P
30.974

16
S
32.059

17
Cl
35.446

18
Ar
39.948

19
K
39.098

20
Ca
40.078



21
Sc
44.956

22
Ti
47.867

23
V
50.942

24
Cr
51.996

25
Mn
54.938

26
Fe
55.845

27
Co
58.933

28
Ni
58.693

29
Cu
63.546

30
Zn
65.38

31
Ga
69.723

32
Ge
72.63

33
As
74.922

34
Se
78.971

35
Br
79.901

36
Kr
83.798

37
Rb
85.468

38
Sr
87.62



39
Y
88.906

40
Zr
91.224

41
Nb
92.906

42
Mo
95.95

43
Tc

44
Ru
101.07

45
Rh
102.906

46
Pd
106.42

47
Ag
107.868

48
Cd
112.414

49
In
114.818

50
Sn
118.71

51
Sb
121.76

52
Te
127.6

53
I
126.904

54
Xe
131.293

55
Cs
132.905

56
Ba
137.327



71
Lu
174.967

72
Hf
178.49

73
Ta
180.948

74
W
183.84

75
Re
186.207

76
Os
190.23

77
Ir
192.217

78
Pt
195.084

79
Au
196.967

80
Hg
200.592

81
Tl
204.382

82
Pb
207.2

83
Bi
208.98

84
Po

85
At

86
Rn

87
Fr

88
Ra



103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

Скачать таблицу менделеева в хорошем качестве

Электронные конфигурации элементов со 105 по 118

Электронные конфигурации элементов со 105 по 118 приведены согласно данных сайта WebElements

  • 105 Db : .5f14.6d3.7s2 (догадка, основанная на электронной конфигурации тантала) ; 2.8.18.32.32.11.2
  • 106 Sg : .5f14.6d4.7s2 (догадка, основанная на электронной конфигурации вольфрама) ; 2.8.18.32.32.12.2
  • 107 Bh : .5f14.6d5.7s2 (догадка, основанная на электронной конфигурации рения) ; 2.8.18.32.32.13.2
  • 108 Hs : .5f14.6d6.7s2 (догадка, основанная на электронной конфигурации осмия) ; 2.8.18.32.32.14.2
  • 109 Mt : .5f14.6d7.7s2 (догадка, основанная на электронной конфигурации иридия) ; 2.8.18.32.32.15.2
  • 110 Ds : .5f14.6d9.7s1 (догадка, основанная на электронной конфигурации платины) ; 2.8.18.32.32.17.1
  • 111 Rg : .5f14.6d10.7s1 (догадка, основанная на электронной конфигурации золота) ; 2.8.18.32.32.18.1
  • 112 Cn : .5f14.6d10.7s2 (догадка, основанная на электронной конфигурации ртути) ; 2.8.18.32.32.18.2
  • 113 Uut : .5f14.6d10.7s2.7p1 (догадка, основанная на электронной конфигурации таллия) ; 2.8.18.32.32.18.3
  • 114 Fl : .5f14.6d10.7s2.7p2 (догадка, основанная на электронной конфигурации свинца) ; 2.8.18.32.32.18.4
  • 115 Uup : .5f14.6d10.7s2.7p3 (догадка, основанная на электронной конфигурации висмута) ; 2.8.18.32.32.18.5
  • 116 Lv : .5f14.6d10.7s2.7p4 (догадка, основанная на электронной конфигурации полония) ; 2.8.18.32.32.18.6
  • 117 Uus : .5f14.6d10.7s2.7p5 (догадка, основанная на электронной конфигурации астата) ; 2.8.18.32.32.18.7
  • 118 Uuo : .5f14.6d10.7s2.7p6 (догадка, основанная на электронной конфигурации радона) ; 2.8.18.32.32.18.8

Электронная схема свинца

You need to enable JavaScript to run this app.

Одинаковую электронную конфигурацию имеют
атом свинца и
Bi+1, Po+2, At+3

Порядок заполнения оболочек атома свинца (Pb) электронами:
1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d →
5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на
‘d’ — до 10 и на ‘f’ до 14

Свинец имеет 82 электрона,
заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

6 электронов на 2p-подуровне

2 электрона на 3s-подуровне

6 электронов на 3p-подуровне

2 электрона на 4s-подуровне

10 электронов на 3d-подуровне

6 электронов на 4p-подуровне

2 электрона на 5s-подуровне

10 электронов на 4d-подуровне

6 электронов на 5p-подуровне

2 электрона на 6s-подуровне

14 электронов на 4f-подуровне

10 электронов на 5d-подуровне

2 электрона на 6p-подуровне

Иные сферы применения цинка

Помимо оцинкования, металл применяется и в других сферах промышленности.

  1. Цинковые листы. Для производства листа выполняется прокатка, в которой важна пластичность. Это зависит от температурного режима. Температура в 25 °С дает пластичность только в одной плоскости, что создает определенные свойства металла. Тут главное для чего изготавливается лист. Чем выше температура, тем тоньше получается металл. В зависимости от этого идет маркировка изделия Ц1, Ц2, Ц3. После этого из листов создаются различные изделия для автомобилей, профиля для строительства и ремонта, для полиграфии и так далее.
  2. Цинковые сплавы. Для улучшенных свойств металлических изделий, добавляется цинк. Данные сплавы создаются при высоких температурах в специальных печах. Чаще всего производятся сплавы из меди, алюминия. Данные сплавы применяются для производства подшипников, различных втулок, которые применимы в машиностроении, судостроении и авиации.

В домашнем обиходе оцинкованное ведро, корыто, листы на крыше – это норма. Применяется цинк, а не хром или никель. И дело не только в том, что оцинкование дешевле, чем покрытие другими материалами. Это наиболее надёжный и продолжительный по службе эксплуатации защитный материал нежели, хром или другие применяемые материалы.

В итоге – цинк наиболее распространенный металл, применяемый широко в металлургии. В машиностроении, строительстве, медицине – материал применим не только как защита от коррозии, но и для увеличения прочности, продолжительного срока эксплуатации. В частных домах оцинкованные листы защищают крышу от осадков, в зданиях выравниваются стены и потолки гипсокартонными листами на основе оцинкованных профилей.

Практически у каждой хозяйки в доме есть оцинкованное ведро, корыто, которым она пользуется длительное время.

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

— Что такое ион читайте в статье.

Перейти к другим элементам таблицы менделеева

1
H
1.008



































2
He
4.003

3
Li
6.938

4
Be
9.012























5
B
10.806

6
C
12.01

7
N
14.006

8
O
15.999

9
F
18.998

10
Ne
20.18

11
Na
22.99

12
Mg
24.304























13
Al
26.982

14
Si
28.084

15
P
30.974

16
S
32.059

17
Cl
35.446

18
Ar
39.948

19
K
39.098

20
Ca
40.078



21
Sc
44.956

22
Ti
47.867

23
V
50.942

24
Cr
51.996

25
Mn
54.938

26
Fe
55.845

27
Co
58.933

28
Ni
58.693

29
Cu
63.546

30
Zn
65.38

31
Ga
69.723

32
Ge
72.63

33
As
74.922

34
Se
78.971

35
Br
79.901

36
Kr
83.798

37
Rb
85.468

38
Sr
87.62



39
Y
88.906

40
Zr
91.224

41
Nb
92.906

42
Mo
95.95

43
Tc

44
Ru
101.07

45
Rh
102.906

46
Pd
106.42

47
Ag
107.868

48
Cd
112.414

49
In
114.818

50
Sn
118.71

51
Sb
121.76

52
Te
127.6

53
I
126.904

54
Xe
131.293

55
Cs
132.905

56
Ba
137.327



71
Lu
174.967

72
Hf
178.49

73
Ta
180.948

74
W
183.84

75
Re
186.207

76
Os
190.23

77
Ir
192.217

78
Pt
195.084

79
Au
196.967

80
Hg
200.592

81
Tl
204.382

82
Pb
207.2

83
Bi
208.98

84
Po

85
At

86
Rn

87
Fr

88
Ra



103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

Скачать таблицу менделеева в хорошем качестве

Цинк что это

Металл серебристо-голубоватого цвета. В соединениях проявляет степень окисления +2. Из девяти радиоактивных изотопов важнейший изотоп 65Zn с периодом полураспада 250 дней. Важнейший минерал Цинка — сфалерит (цинковая обманка). В виде соединений цинк находится в полиметаллических рудах, содержащих свинец, медь и железо.

Сульфат цинка (цинковый купорос) поступает в лаборатории в виде кристаллогидрата ZnSO4-7H2O. Разбавленные растворы применяются как лекарственное средство при некоторых заболеваниях. Как уже указывалось, сульфат цинка используют для получения металлического цинка путем электролиза, а также как протраву при крашении тканей. Хлорид цинка ZnCl2 — «травленая кислота» применяется при паянии, для пропитки древесины с целью предохранения ее от гниения, в производстве пергамента. Цинк в природе встречается в виде минерала цинковой обманки ZnS, которая является цинковой рудой. Цинк из нее получают посредством обжига на воздухе с последующим восстановлением полученной окиси углем: 2ZnS + 3O2 = 2SO2 + 2ZnO ZnO + С = Zn + СО Образовавшуюся окись иногда при наличии дешевой электроэнергии переводят серной кислотой в сульфат, а затем последний подвергают электролизу. Свободный цинк широко применяется в промышленности. Благодаря способности образовывать на поверхности металла защитную окисную пленку цинком покрывают изделия из железа для защиты от коррозии посредством погружения их в расплавленный цинк (цинкование). Чистый цинк довольно хрупок, поэтому чаще он применяется в составе сплавов, например латуни . Соединения цинка имеют гораздо более ограниченное применение по сравнению с чистым металлом. ■ 26. Что такое амфотерность и как она проявляется в соединениях цинка? (См. Ответ) 27. Укажите способы получения окиси и гидроокиси цинка. 28. Почему цинковая посуда портится при добавлении в нее при стирке уксуса или щелочи? Можно ли в цинковой посуде держать раствор медного купороса? 29. Каким простейшим способом можно освободить раствор сульфата цинка от примеси раствора сульфата меди? (См. Ответ)

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

— Что такое ион читайте в статье.

Перейти к другим элементам таблицы менделеева

1
H
1.008



































2
He
4.003

3
Li
6.938

4
Be
9.012























5
B
10.806

6
C
12.01

7
N
14.006

8
O
15.999

9
F
18.998

10
Ne
20.18

11
Na
22.99

12
Mg
24.304























13
Al
26.982

14
Si
28.084

15
P
30.974

16
S
32.059

17
Cl
35.446

18
Ar
39.948

19
K
39.098

20
Ca
40.078



21
Sc
44.956

22
Ti
47.867

23
V
50.942

24
Cr
51.996

25
Mn
54.938

26
Fe
55.845

27
Co
58.933

28
Ni
58.693

29
Cu
63.546

30
Zn
65.38

31
Ga
69.723

32
Ge
72.63

33
As
74.922

34
Se
78.971

35
Br
79.901

36
Kr
83.798

37
Rb
85.468

38
Sr
87.62



39
Y
88.906

40
Zr
91.224

41
Nb
92.906

42
Mo
95.95

43
Tc

44
Ru
101.07

45
Rh
102.906

46
Pd
106.42

47
Ag
107.868

48
Cd
112.414

49
In
114.818

50
Sn
118.71

51
Sb
121.76

52
Te
127.6

53
I
126.904

54
Xe
131.293

55
Cs
132.905

56
Ba
137.327



71
Lu
174.967

72
Hf
178.49

73
Ta
180.948

74
W
183.84

75
Re
186.207

76
Os
190.23

77
Ir
192.217

78
Pt
195.084

79
Au
196.967

80
Hg
200.592

81
Tl
204.382

82
Pb
207.2

83
Bi
208.98

84
Po

85
At

86
Rn

87
Fr

88
Ra



103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

Скачать таблицу менделеева в хорошем качестве

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s22s22p63s23p63d64s2, то есть железо относится к d-элементам,  поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей,  а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах.  При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду,  выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

3Fe + 2O2 =to=> Fe3O4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =to=> FeS

Либо же при избытке серы дисульфид железа:

Fe + 2S =to=> FeS2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =to=> 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =to=> 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =to=> 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I2 =to=> FeI2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

2Fe(OH)3 + 6HI = 2FeI2 + I2 + 6H2O

Fe2O3 + 6HI = 2FeI2 + I2 + 3H2O

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.)  и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной  и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H2SO4 = ot=> Fe2(SO4)3 + 3SO2 + 6H2O

Fe + 6HNO3 =ot=> Fe(NO3)3 + 3NO2 + 3H2O

Обратите внимание на то,  что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 оС). т.е.:

Способы оцинкования

Металлургические заводы отличительны не только своим оборудованием, но и применяемыми методами производства. Это зависит от ценовой политики, и месторасположения (природных ресурсов, используемых для металлургической промышленности). Есть несколько методов оцинкования, которые рассматриваются ниже.

Горячий способ оцинкования

Данный способ заключается в обмакивании металлической детали в жидком растворе. Происходит это так:

  1. Деталь или изделие обезжиривается, очищается, промывается и сушится.
  2. Далее, цинк расплавляется до жидкого состояния при температуре до 480 °С.
  3. В жидкий раствор опускается подготовленное изделие. При этом оно хорошо смачивается в растворе и образуется покрытие толщиной до 450 мкм. Это является 100% защитой от воздействия внешних факторов на изделие (влага, прямые солнечные лучи, вода с химическими примесями).

Горячее цинкование металлоконструкций

Но, данный метод имеет ряд недостатков:

  • Цинковая пленка на изделии получается неравномерного слоя.
  • Нельзя использовать данный метод для деталей, отвечающих точным стандартам по ГОСТу. Где каждый миллиметр считается браком.
  • После горячего оцинкования, не каждая деталь останется прочной и износостойкой, поскольку после прохождения высокой температуры появляется хрупкость.

А также данный метод не подходит для изделий, покрытых лакокрасочными материалами.

Холодное оцинкование

Этот метод носит 2 названия: гальванический и электролитический. Методика покрытия изделия защитой от коррозии такова:

  1. Металлическая деталь, изделие подготавливается (обезжиривается, очищается).
  2. После этого проводится «метод окрашивания» — применяется специальный состав, имеющий главный компонент – цинк.
  3. Деталь покрывается данным составом методом распыления.

Холодное цинкование

Благодаря этому методу защитой покрываются детали с точным допуском, изделия, покрытые лакокрасочными материалами. Повышается стойкость к внешним факторам, приводящим к коррозии.

Недостатки данного метода: тонкий защитный слой – до 35 мкм. Это приводит к меньшей защите и небольшим срокам защиты.

Термодиффузионный способ

Данный метод делает покрытие, которое является электродом с положительной полярностью, в то время как металл изделия (сталь) становится отрицательной полярности. Появляется электрохимический защитный слой.

Метод применим только в случае, если детали произведены из углеродистой стали, чугуна, стали с примесями. Цинк используется таким образом:

  1. При температуре от 290 °С до 450 °С в порошковой среде, поверхность детали насыщается Zn. Здесь маркировка стали, а также тип изделия имеют значение – выбирается соответствующая температура.
  2. Толщина защитного слоя достигает 110 мкм.
  3. В закрытый резервуар помещается изделие из стали, чугуна.
  4. Добавляется туда специальная смесь.
  5. Последним шагом является специальная обработка изделия от появления белых высолов от солёной воды.

Термодиффузионное цинкование

В основном данным методом пользуются в случае, если требуется покрыть детали, имеющие сложную форму: резьбу, мелкие штрихи. Образование равномерного защитного слоя является важным, поскольку данные детали претерпевают множественное воздействие внешней агрессивной среды (постоянная влага).

Данный метод дает самый большой процент защиты изделия от коррозии

Оцинкованное напыление является износостойким и практически нестираемым, что очень важно для деталей, которые время о времени крутятся и разбираются

История

Сплав цинка с медью — латунь — был известен ещё в Древней Греции, Древнем Египте, Индии (VII век), Китае (XI век). Долгое время не удавалось выделить чистый цинк. В 1738 году в Англии был запатентован дистилляционный способ получения цинка. В промышленном масштабе выплавка цинка началась также в XVIII веке: в 1743 году в Бристоле вступил в строй первый цинковый завод, основанный Уильямом Чемпионом, где получение цинка проводилось дистилляционным способом. В 1746 году А. С. Маргграф в Германии разработал похожий способ получения чистого цинка путём прокаливания смеси его оксида с углём без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров цинка в холодильниках. Маргграф описал свой метод во всех деталях и этим заложил основы теории производства цинка. Поэтому его часто называют первооткрывателем цинка.

В 1805 году Чарльз Гобсон и Чарльз Сильвестр из Шеффилда запатентовали способ обработки цинка — прокатка при 100—150 °C. Первый в России цинк был получен на заводе «Алагир» 1 января 1905 года. Первые заводы, где цинк получали электролитическим способом, появились в 1915 году в Канаде и США.

Получение чистого цинка

Как упоминалось выше – в природе чистого вида нет. В основном добыча производится из руд, в которых он идет с различными элементами.

Для получения чистого материала задействован специальный флотационный процесс с избирательностью (селективностью). После проведения процесса руда распадается на элементы: цинк, свинец, медь и так далее.

Добытый таким методом чистый металл обжигается в специальной печи. Там при определенных температурах сульфидное состояние материала переходит в оксидное. При обжиге выделяется газ с содержанием серы, направляемый для получения серной кислоты.

Чистый цинк

Есть 2 способа получения металла:

  1. Пирометаллургический – идет процесс обжигания, после — полученная масса восстанавливается с помощью чёрного угля и кокса. Конечным процессом является отстаивание.
  2. Электролитический – добытая масса обрабатывается серной кислотой. Полученный раствор подвергают электролизу, при этом металл оседает, его плавят в печах.

Примечания

  1. Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1999. — Т. 5. — С. 378.
  2. Казаков Б.И. Металл из Атлантиды. (О цинке). — М.: Металлургия, 1984. — 128 с.
  3. Hoover, Herbert Clark (2003), Georgius Agricola de Re Metallica, Kessinger Publishing, с. 409, ISBN 0766131971
  4. Gerhartz, Wolfgang (1996), Ullmann’s Encyclopedia of Industrial Chemistry (5th ed.), VHC, с. 509, ISBN 3527201009
  5.  (недоступная ссылка). Дата обращения 29 ноября 2010.
  6. . (19.12.2014).
  7. ↑ Ориентировочные данные
  8. А. В. Скальный. Цинк и здоровье человека. — РИК ГОУ ОГУ, 2003.
  9.  (недоступная ссылка). Дата обращения 30 мая 2011.

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

— Что такое ион читайте в статье.

Перейти к другим элементам таблицы менделеева

1
H
1.008



































2
He
4.003

3
Li
6.938

4
Be
9.012























5
B
10.806

6
C
12.01

7
N
14.006

8
O
15.999

9
F
18.998

10
Ne
20.18

11
Na
22.99

12
Mg
24.304























13
Al
26.982

14
Si
28.084

15
P
30.974

16
S
32.059

17
Cl
35.446

18
Ar
39.948

19
K
39.098

20
Ca
40.078



21
Sc
44.956

22
Ti
47.867

23
V
50.942

24
Cr
51.996

25
Mn
54.938

26
Fe
55.845

27
Co
58.933

28
Ni
58.693

29
Cu
63.546

30
Zn
65.38

31
Ga
69.723

32
Ge
72.63

33
As
74.922

34
Se
78.971

35
Br
79.901

36
Kr
83.798

37
Rb
85.468

38
Sr
87.62



39
Y
88.906

40
Zr
91.224

41
Nb
92.906

42
Mo
95.95

43
Tc

44
Ru
101.07

45
Rh
102.906

46
Pd
106.42

47
Ag
107.868

48
Cd
112.414

49
In
114.818

50
Sn
118.71

51
Sb
121.76

52
Te
127.6

53
I
126.904

54
Xe
131.293

55
Cs
132.905

56
Ba
137.327



71
Lu
174.967

72
Hf
178.49

73
Ta
180.948

74
W
183.84

75
Re
186.207

76
Os
190.23

77
Ir
192.217

78
Pt
195.084

79
Au
196.967

80
Hg
200.592

81
Tl
204.382

82
Pb
207.2

83
Bi
208.98

84
Po

85
At

86
Rn

87
Fr

88
Ra



103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

Скачать таблицу менделеева в хорошем качестве

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

— Что такое ион читайте в статье.

Перейти к другим элементам таблицы менделеева

1
H
1.008



































2
He
4.003

3
Li
6.938

4
Be
9.012























5
B
10.806

6
C
12.01

7
N
14.006

8
O
15.999

9
F
18.998

10
Ne
20.18

11
Na
22.99

12
Mg
24.304























13
Al
26.982

14
Si
28.084

15
P
30.974

16
S
32.059

17
Cl
35.446

18
Ar
39.948

19
K
39.098

20
Ca
40.078



21
Sc
44.956

22
Ti
47.867

23
V
50.942

24
Cr
51.996

25
Mn
54.938

26
Fe
55.845

27
Co
58.933

28
Ni
58.693

29
Cu
63.546

30
Zn
65.38

31
Ga
69.723

32
Ge
72.63

33
As
74.922

34
Se
78.971

35
Br
79.901

36
Kr
83.798

37
Rb
85.468

38
Sr
87.62



39
Y
88.906

40
Zr
91.224

41
Nb
92.906

42
Mo
95.95

43
Tc

44
Ru
101.07

45
Rh
102.906

46
Pd
106.42

47
Ag
107.868

48
Cd
112.414

49
In
114.818

50
Sn
118.71

51
Sb
121.76

52
Te
127.6

53
I
126.904

54
Xe
131.293

55
Cs
132.905

56
Ba
137.327



71
Lu
174.967

72
Hf
178.49

73
Ta
180.948

74
W
183.84

75
Re
186.207

76
Os
190.23

77
Ir
192.217

78
Pt
195.084

79
Au
196.967

80
Hg
200.592

81
Tl
204.382

82
Pb
207.2

83
Bi
208.98

84
Po

85
At

86
Rn

87
Fr

88
Ra



103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

Скачать таблицу менделеева в хорошем качестве

Ртуть Hg

Ртуть — единственный металл, находящийся при обычной температуре в жидком состоянии (температуре плавления — 38,8°). Ртуть белого цвета. Она обладает меньшей восстановительной активностью, чем цинк. В ряду напряжений ртуть располагается правее водорода, т. е. не вытесняет его из воды и кислот. Радиус атома ртути почти равен радиусу атома кадмия, а заряд ядра атома значительно больше, поэтому электроны внешнего слоя удерживаются ртутью значительно прочнее. ■ 30. Изобразите электронную конфигурацию внешнего и предв-нешнего слоя атома ртути. Объясните, почему среди металлов группы цинка ртуть проявляет наименьшую восстановительную активность. (См. Ответ) Ртуть легко образует с другими металлами сплавы, которые называются амальгамами. Ртуть химически малоактивна и на воздухе без изменений может храниться довольно долго. Однако при длительном слабом нагревании может окисляться, образуя окись ртути: 2Hg + O2 = 2HgO При растирании в ступке ртуть очень легко взаимодействует с серой, образуя сульфид ртути (II) черного цвета: Hg + S = HgS С водой ртуть в реакцию не вступает, но хорошо реагирует с азотной и концентрированной серной кислотами, обладающими сильным окисляющим действием. При этом в зависимости от того, при какой температуре ведется реакция, образуются соли как одновалентной, так и двухвалентной ртути. Ртуть в соединениях может быть одновалентной и двухвалентной. Соединения как одновалентной, так и двухвалентной ртути достаточно устойчивы, хотя и могут превращаться друг в друга. Следует отметить сильную ядовитость ртути, которая даже при комнатной температуре легко испаряется и может вызвать тяжелые отравления, оказывающие сильное влияние на сердце. При попадании соединений ртути внутрь возникает расстройство деятельности органов пищеварения и почек. Очень ядовиты и соединения ртути, такие, как, например, сулема. В промышленности применяется как металлическая ртуть, так и некоторые ее соли. Металлическую ртуть используют при изготовлении термометров, барометров и некоторых измерительных приборов, а также при добыче золота для его очистки от примесей, так как ртуть легко образует амальгамы с золотом и некоторыми другими драгоценными металлами. Этим ее свойством пользуются и в зубоврачебной практике для изготовления пломб.

Соли ртути также находят некоторое применение. Например, сулема HgCl2 используется как дезинфицирующее средство, каломель Hg2Cl2(Cl — Hg — Hg — Cl) — как легкое слабительное. В природе ртуть встречается изредка в самородном жидком состоянии, но чаще в виде соединений, например киновари HgS. Для получения из нее ртути киноварь сначала обжигают: 2HgS + 3O2 = 2HgO + 2SO2 а затем полученную окись ртути HgO разлагают нагреванием: 2HgO = 2Hg + O2 Обычно обе реакции протекают одновременно в едином процессе. ■ 31. Что такое амальгамы? С какой амальгамой вы уже знакомы? (См. Ответ) 32. Перечислите особенности химических свойств ртути. 33. Каково физиологическое действие ртути? 34. Укажите, где применяется металлическая ртуть. 35. Что вам известно о соединениях ртути? 36. В каком виде ртуть может встречаться в природе и как можно получить ее из природных соединений? Подтвердите свой ответ уравнениями реакций. 37. Основываясь на положении ртути в ряду напряжений металлов, опишите отношение ртути к воде, соляной кислоте, разбавленной и концентрированной серной кислоте, разбавленной и концентрированной азотной кислоте. (См. Ответ)

Цинк в металлургии

Металлургическая промышленность задействует данный элемент периодической таблицы как основной для достижения определенных целей. Выплавка чугуна, стали является главной во всей металлургии страны. Но, данные металлы подвержены негативному влиянию окружающей среды. Без определенной обработки идет быстрое окисление металлов, что приводит к их порче. Наилучшей защитой служит оцинкование.

Нанесение защитной плёнки на чугун и сталь является лучшим средством от коррозии. На оцинкование уходит около 40% всего производства чистого материала.

Химические, физические свойства и характеристики цинка

Цинк – металл, обладает рядом свойств и характеристик, отличающих его от иных элементов периодической таблицы.

К физическим свойствам цинка относится его состояние. Основным фактором выступает температурный режим. Если при комнатной температуре это хрупкий материал, плотность цинка 7130 кг/м3 (˃ плотности стали), который практически не гнётся, то при повышении он легко изгибается и прокатывается в листах на заводах. Если взять более высокий температурный режим – материал приобретает жидкое состояние, а если еще поднять температуру на 400-450 °С градусов, тогда он просто испарится. В этом уникальность – менять своё состояние. Если же подействовать кислотами и щелочами, он может рассыпаться, взорваться, расплавиться.

Цинк в жидком состоянии

Формула цинка Zn – zincum. Атомная масса цинка 65.382 а.е.м.

Электронная формула: ядро атома металла содержит 30 протон, 35 нейтрон. В атоме 4 энергетических уровня – 30 электронов. (рис. строение атома цинка)1s22s22p63s23p63d104s2.

Кристаллическая решётка цинка – шестиугольная кристаллическая система с плотно прижатыми атомами. Данные решётки: A=2.66У, С=4.94.

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

— Что такое ион читайте в статье.

Перейти к другим элементам таблицы менделеева

1
H
1.008



































2
He
4.003

3
Li
6.938

4
Be
9.012























5
B
10.806

6
C
12.01

7
N
14.006

8
O
15.999

9
F
18.998

10
Ne
20.18

11
Na
22.99

12
Mg
24.304























13
Al
26.982

14
Si
28.084

15
P
30.974

16
S
32.059

17
Cl
35.446

18
Ar
39.948

19
K
39.098

20
Ca
40.078



21
Sc
44.956

22
Ti
47.867

23
V
50.942

24
Cr
51.996

25
Mn
54.938

26
Fe
55.845

27
Co
58.933

28
Ni
58.693

29
Cu
63.546

30
Zn
65.38

31
Ga
69.723

32
Ge
72.63

33
As
74.922

34
Se
78.971

35
Br
79.901

36
Kr
83.798

37
Rb
85.468

38
Sr
87.62



39
Y
88.906

40
Zr
91.224

41
Nb
92.906

42
Mo
95.95

43
Tc

44
Ru
101.07

45
Rh
102.906

46
Pd
106.42

47
Ag
107.868

48
Cd
112.414

49
In
114.818

50
Sn
118.71

51
Sb
121.76

52
Te
127.6

53
I
126.904

54
Xe
131.293

55
Cs
132.905

56
Ba
137.327



71
Lu
174.967

72
Hf
178.49

73
Ta
180.948

74
W
183.84

75
Re
186.207

76
Os
190.23

77
Ir
192.217

78
Pt
195.084

79
Au
196.967

80
Hg
200.592

81
Tl
204.382

82
Pb
207.2

83
Bi
208.98

84
Po

85
At

86
Rn

87
Fr

88
Ra



103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

Скачать таблицу менделеева в хорошем качестве

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector