Проводниковые материалы высокой проводимости

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

2. Химические свойства.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Сравнение алюминиевых и медных проводов по техническим характеристикам

Для того, чтобы понять, чем отличается медь и алюминий, нужно рассмотреть и сравнить их технические характеристики.

Свойства проводников

Основными электрическими свойствами материала проводников являются их удельное электрическое сопротивление, теплопроводность и температурный коэффициент сопротивления. К механическим свойствам можно отнести вес, прочность, удлинение перед разрывом и срок службы в режиме нормальной работы.

Удельное электрическое сопротивление

Удельное электрическое сопротивление – это способность материала оказывать сопротивление электрическому току при его протекании через проводник. Эта характеристика вычисляется по формуле:

Ρ = r⋅S/l,

где l – длина проводника, S – площадь поперечного сечения, r – сопротивление.

Для сравнения:

Материал проводника Удельное электрическое сопротивление, Ом·мм²/м
Медь 0,0175
Алюминий 0,0300

Как видно из этой таблицы, у меди удельное сопротивление ниже и, соответственно, она меньше нагревается и лучше проводит электрический ток.

Теплопроводность

Теплопроводность – это свойство проводника, которое показывает количество тепла, которое проходит в единицу времени через слой вещества

Для расчёта электрического кабеля данная характеристика является достаточно важной, так как от неё зависит безопасная эксплуатация электропроводки. Чем выше теплопроводность материала, тем он меньше нагревается и лучше отдает лишнее тепло

Для сравнения:

Материал проводника Теплопроводность, Вт/(м·К)
Медь 401
Алюминий 202—236

Температурный коэффициент сопротивления

При нагревании различных материалов их электропроводимость изменяется. Характеристикой, которая показывает это изменение называется температурным коэффициентом сопротивления (ТКС). Это значение выявляют с помощью специального измерителя ТКС и берут среднее значение этого коэффициента.

Для сравнения:

Материал проводника Температурный коэффициент сопротивления, 10-3/K
Медь 4,0
Алюминий 4,3

Чем меньше температурный коэффициент сопротивления, тем большей стабильностью обладает проводник.

Вес и электропроводимость проводника

Медь намного тяжелее алюминия. Её плотность составляет 8900 кг/м³, а плотность алюминия 2700 кг/м³. Это означает, что проводник из меди будет тяжелее аналогичного по размеру алюминиевого провода в 3,4 раза.

Важно понимать, что электропроводимость меди более чем на 50% выше, чем у алюминия и, соответственно, чтобы проводник из алюминия мог провести такой же ток он должен быть больше медного на 50%. Поэтому эффективнее использовать медный проводник, чем кабель из алюминиевого материала

Поэтому эффективнее использовать медный проводник, чем кабель из алюминиевого материала.

Удлинение перед разрывом и прочность

Электрический кабель может работать в различных режимах и условиях эксплуатации, поэтому при выборе проводника очень важно учитывать его стойкость к механическим нагрузкам. Сопротивление на разрыв – характеристика, которая учитывает прочность материала и противодействие разрушающей нагрузке

Для сравнения:

Материал проводника Предел прочности на разрыв, кг/м²
Медь 27 – 44,9
Алюминий 8 – 25

Исходя из анализа таблицы хорошо видно, что медь обладает высокой стойкостью к механическому воздействию и существенно превосходит алюминий по такой характеристике.

Срок службы

Срок службы электрической проводки зависит от условий эксплуатации и окружающей среды. Принято считать, что срок службы алюминиевого кабеля в нормальных условиях работы составляет 20-30 лет. В то же время медная проводка служит значительно дольше и срок её службы может достигать до 50 лет.

Медь

Cu — медь.

Примеры применения

Провода.Гибкие многожильные провода различного сечения.Гибкие тоководы. Теплоотводы. Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.При изготовлении фольгированных печатных плат.Техника сверхвысокого вакуума.Аноды рентгеновских трубок.

Интересные факты о меди

  • Медь — достаточно дорогой металл, поэтому недобросовестные производители стараются экономить на нем. Занижают сечение проводов (когда написано 0,75 мм2, а фактически 0,11 мм2). Окрашивают алюминий «под медь» в обмотках, внешне обмотка выглядит как медная, а стоит соскрести изоляцию — оказывается, что она сделана из алюминия. Этим грешат и китайские, и отечественные производители, кабель сечением 2,5 мм2 вполне может оказаться сечением 2,3 мм2, поэтому запас прочности и входной контроль не будут лишними. Разумеется, надежность контакта в электроарматуре жилы сечением 2,3 мм2, рассчитанной на жилу 2,5 мм2, будет невысокой.
  • Медь окрашивает пламя в зелёный цвет, это свойство использовали для обнаружения меди в руде, когда не был доступен химический анализ. Зеленый след в пламени — показатель наличия меди. (но не всегда, зеленую окраску пламени могут давать ионы бора)
  • Медь — мягкий металл, но если добавить к меди хотя бы 10% олова, получается твёрдый, упругий сплав — бронза. Именно освоение получения бронзы послужило названием к исторической эпохе — бронзовому веку. Добавка к меди бериллия дает бериллиевую бронзу — прочный упругий сплав, из которого изготавливают пружинящие контакты.
  • Медь — один из немногих мягких металлов с высокой температурой плавления, поэтому из меди изготавливают уплотнительные прокладки, например для высокотемпературной или вакуумной техники. Например, уплотнительная прокладка пробки картера двигателя автомобиля.
  • При механической обработке (например волочении) медь уплотняется и становится жёсткой. Для восстановления исходной мягкости и пластичности медь «отжигают» в защитной атмосфере, нагревая до 500-700 °C и выдерживая некоторое время. Поэтому некоторые медные изделия твёрдые, а некоторые мягкие, например медные трубы.
  • Медь не даёт искр. Для работы во взрывоопасных местах, например на газопроводе, используют искробезопасный инструмент, стальной инструмент покрытый слоем меди или инструмент изготовленный из сплавов меди — бронз. Если таким инструментом случайно чиркнуть по стальной поверхности он не даст опасных искр.
  • Так как температурный коэффициент сопротивления для чистой меди известен, из меди изготавливают термометры сопротивления (тип ТСМ — Термометр Сопротивления Медный, есть еще ТСП — Термометр Сопротивления Платиновый). Термометр сопротивления — это точно изготовленный резистор, навитый из медной проволоки. Измерив его сопротивление, можно по таблице или по формуле определить его температуру достаточно точно.

Химические свойства

Сопротивление меди, способность данного металла проводить электрический ток объясняются особенностями строения атома этого химического элемента. Медь располагается в побочной подгруппе первой группы таблицы Менделеева, является d-элементом.

Сопротивление меди связано с электронами, располагающимися на внешнем энергетическом уровне. Особенности строения объясняют и специфику химических свойств данного металла. При незначительной влажности медь является достаточно инертным веществом, не проявляет высокой химической активности.

При эксплуатации медных изделий в условиях высокой влажности и присутствия углекислого газа происходит окисление металла.

На поверхности изделия появляется зеленоватая пленка карбоната и гидроксида меди (2), а также разнообразные сернистые соединения. Данную пленку называют патиной, она помогает защищать изделие от последующего химического разрушения.

При повышении температурного значения происходит образование медной окалины (оксида), что негативно отражается на электрической проводимости.

Медь легко вступает во взаимодействие с элементами, относящимися к подгруппе галогенов.

Если внести в металл пары серы, наблюдается воспламенение. Медь инертна к азоту, водороду, углероду даже при повышенных температурных значениях.

Интерес с технической точки зрения представляет взаимодействие этого металла с солями железа, приводящими к его восстановлению. Это химическое свойство позволяет снимать с изделий медное напыление.

Медь образует разнообразные комплексные соединения, которые отличаются высокой стойкостью.

Удельная электропроводность

Удельной электропроводностью (удельной проводимостью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

J→=σE→,{\displaystyle {\vec {J}}=\sigma \,{\vec {E}},}

где

σ{\displaystyle \sigma } — удельная проводимость,
J→{\displaystyle {\vec {J}}} — вектор плотности тока,
E→{\displaystyle {\vec {E}}} — вектор напряжённости электрического поля.

Электрическая проводимость G однородного проводника длиной L с постоянным поперечным сечением площадью S может быть выражена через удельную проводимость вещества, из которого сделан проводник:

G=σSL.{\displaystyle G=\sigma {\frac {S}{L}}.}

В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом−1·м−1. В СГСЭ единицей удельной электропроводности является обратная секунда (с−1).

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

Ji=∑k=13σikEk,{\displaystyle J_{i}=\sum \limits _{k=1}^{3}\sigma _{ik}\,E_{k},}

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) т. н. собственный базис — ортогональную систему декартовых координат, в которых матрица σik{\displaystyle \sigma _{ik}} становится диагональной, то есть приобретает вид, при котором из девяти компонент σik{\displaystyle \sigma _{ik}} отличными от нуля являются лишь три: σ11{\displaystyle \sigma _{11}}, σ22{\displaystyle \sigma _{22}} и σ33{\displaystyle \sigma _{33}}. В этом случае, обозначив σii{\displaystyle \sigma _{ii}} как σi{\displaystyle \sigma _{i}}, вместо предыдущей формулы получаем более простую

Ji=σiEi.{\displaystyle J_{i}=\sigma _{i}E_{i}.}

Величины σi{\displaystyle \sigma _{i}} называют главными значениями тензора удельной проводимости. В общем случае приведённое соотношение выполняется только в одной системе координат.

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае приближённо, причём приближение это хорошо только для сравнительно малых величин E. Впрочем, и при таких величинах E, когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность.

Также в случае нелинейной зависимости J от E (то есть в общем случае) может явно вводиться дифференциальная удельная электропроводность, зависящая от E:

σ=dJdE{\displaystyle \sigma =dJ/dE} (для анизотропных сред: σik=dJidEk{\displaystyle \sigma _{ik}=dJ_{i}/dE_{k}}).

Электропроводность растворов

Скорость движения ионов зависит от напряженности электрического поля, температуры, вязкости раствора, радиуса и заряда иона и межионного взаимодействия.

У растворов сильных электролитов наблюдается характер концентрационной зависимости электрической проводимости объясняется действием двух взаимнопротивоположных эффектов. С одной стороны, с ростом разбавления уменьшается число ионов в единице объёма раствора. С другой стороны, возрастает их скорость за счет ослабления торможения ионами противоположного знака.

Для растворов слабых электролитов наблюдается характер концентрационной зависимости электрической проводимости можно объяснить тем, что рост разбавления ведёт, с одной стороны, к уменьшению концентрации молекул электролита. В то же время возрастает число ионов за счёт роста степени ионизации.

В отличие от металлов (проводники 1-го рода) электрическая проводимость растворов как слабых, так и сильных электролитов (проводники 2-го рода) при повышении температуры возрастает. Этот факт можно объяснить увеличением подвижности в результате понижения вязкости раствора и ослаблением межионного взаимодействия

Электрофоретический эффект — возникновение торможения носителей вследствие того, что ионы противоположного знака под действием электрического поля двигаются в направлении, обратном направлению движения рассматриваемого иона

Релаксационый эффект — торможение носителей в связи с тем, что ионы при движении расположены асимметрично по отношению к их ионным атмосферам. Накопление зарядов противоположного знака в пространстве за ионом приводит к торможению его движения.

При больших напряжениях электрического поля скорость движения ионов настолько велика, что ионная атмосфера не успевает образоваться. В результате электрофоретическое и релаксационное торможение не проявляется.

Как получают медь?

Медь, используемая в проводах и кабелях достаточно высокой чистоты. Для её получения используют медные руды (сульфидные, оксидные и смешанные). Напомню, что такое сульфидные руды — это ископаемое сырье, которое добывается в природе и состоит из тяжелого металла (руда), серы(сульфид) и разных примесей.

На долю сульфидных руд приходится почти вся добыча и запасы меди (среди рудной добычи). Самыми распространенными минералами по залежам и целесообразности добычи среди сульфидных руд являются — халькопирит (CuFeS2), халькозин (Cu2S), борнит (Cu5FeS4).

название минерала хим.формула % меди цвет
халькопирит CuFeS2 34,5 золотой, желтый
халькозин Cu2S 79,8 черный, серый, синий
борнит Cu5FeS4 63,3 красный, медный

В общем, на первом этапе добывают медьсодержащие руды.

Затем добытые руды необходимо очистить от всех примесей и посторонних металлов, чтобы на выходе получилась медь. Для этих целей используют следующие методы: пирометаллургический, гидрометаллургический и электролиз. Например, после пирометаллургического метода мы получим слитки меди, в которых самой меди будет 90 процентов. Неплохо, однако можно и лучше.

Затем эту черновую медь доводят до 99,99% чистоты методом электролитической очистки и мы получаем то, что и используется в энергетике.

Примеси в медных сплавах

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Физические свойства металла

Пожалуй, невозможно понять, что такое металлическая медь, не разобравшись в ее свойствах, основных характеристиках и особенностях.

При контакте с воздухом этот металл становится желтовато-розового цвета. Этот неповторимый золотисто-розовый оттенок обусловливается возникновением на поверхности металла оксидной пленки. Если эту пленку удалить, медь приобретет выразительный розовый цвет с характерным ярким металлическим блеском.

Удивительный факт: тончайшие медные пластинки на просвет имеют вовсе не розовый, а зеленовато-голубой или, иначе говоря, морской цвет.

В форме простого вещества медь обладает следующими характеристиками:

  • удивительной пластичностью;
  • достаточной мягкостью;
  • тягучестью.

Чистая медь без наличия каких-либо примесей превосходно поддается обработке — ее с легкостью можно прокатить в пруток или лист либо вытянуть в проволоку, толщина которой будет доведена до тысячных долей миллиметра. Добавление примесей в этот металл повышает его твердость.

Помимо упомянутых физических характеристик, этот химический элемент обладает высокой электропроводностью. Эта особенность главным образом определила применение металлической меди.

Среди основных свойств этого металла стоит отметить его высокую теплопроводность. По показателям электропроводности и теплопроводности медь является одним из лидеров среди металлов. Более высокими показателями по этим параметрам обладает только один металл — серебро.

Нельзя не принимать во внимание тот факт, что показатели электро- и теплопроводности меди относятся к разряду базовых свойств. Они сохраняются на высоком уровне лишь пока металл находится в чистом виде

Уменьшить эти показатели возможно добавлением примесей:

  • мышьяка;
  • железа;
  • олова;
  • фосфора;
  • сурьмы.

Каждая из этих примесей в сочетании с медью оказывает на нее определенное влияние, в результате которого значения тепло- и электропроводности заметно понижаются.

Помимо всего прочего, металлическая медь характеризуется невероятной прочностью, высокой температурой плавления, а также высокой температурой кипения. Данные действительно впечатляют. Температура плавления меди превышает одну тысячу градусов Цельсия! А температура кипения составляет 2570 градусов Цельсия.

Этот металл относится к группе металлов-диамагнетиков. Это значит, что его намагничивание, как и у ряда других металлов, происходит не по направлению внешнего магнитного поля, а против него.

Еще одной немаловажной характеристикой можно назвать отличную устойчивость этого металла к коррозии. В условиях высокой влажности окисление железа, например, происходит в несколько раз быстрее, чем окисление меди

Статьи на тему — Электрика, проводка

С 2006 года стоимость меди на Лондонской бирже металлов доходила до 8500 долл/тонну, в то время как алюминия — 2500 долл/тонну.

Это связано с усовершенствованием и увеличением производства алюминия, при доступном и недорогом сырье, которое, в стоимости конечного продукта, составляет 25%.

Для меди — ситуация иная. Медные рудные запасы ухудшаются, содержание меди руде падает, новые месторождения бедны металлом и сложнее в его извлечении. Кроме того, эти месторождения географически более труднодоступны. Поэтому, затраты на сырьё в стоимости конечного продукта, составляют более 50 % и ещё растут.

Эти тенденции не изменяются, так же, как и сравнительная динамика цен, а изменения не предвидятся. Всё это говорит в пользу использования алюминия.

Научное открытие сверхпроводимости и её промышленное применение пока ещё недостижимы для мировой практики. В свете того, что электрическая проводимость алюминия ниже, чем у меди, сечение алюминиевого провода и, следовательно его объём, должны быть больше чем у медного, причём диаметр алюминиевого провода, для той же плотности тока, должен быть больше чем медного на 25 %.

Однако, увеличение объёма, а следовательно массы алюминиевого провода, нивелируется невысокой плотностью металла (2,7 т/м3 — алюминий, 8,9 т/м3 — медь). Поэтому масса алюминиевого провода, для той же плотности тока, в три раза меньше чем медного.

Однако выигрыша по массе, при применении алюминиевого провода вместо медного, из-за требований СНИПа, нет. Например, масса меди в проложенных проводах и кабелях, в панелях современной трёхкомнатной квартиры, составляет 10 кг. Масса трехжильного кабеля длиной в 1000 метров кабеля ВВГ (медь) сечением 1,5 мм2 составляет 93 кг, а масса эквивалентного ему кабеля АВВГ (алюминий) сечением 2,5 мм2 составляет 101 кг. Выгода от применения алюминиевых проводов получается из-за гораздо меньших цен на алюминий.

При существующих на сегодня ценах, применение алюминиевых проводов в несколько раз выгоднее, чем медных!

Для высоковольтных линий и для подвесных кабельных систем алюминий используется уже давно. Но в изолированных проводах увеличение диаметра жилы требует увеличения расхода кабельного ПВХ пластиката, цена которого (1800 долл/тонну) приближается к цене алюминия. Чем тоньше жила провода, тем больше сравнительные затраты на электроизоляцию, а выгоды от перехода с меди на алюминий – ниже. Однако, при текущих ценах, экономия всё равно получается значительной!

Проектировщики, архитекторы, электрики должны преодолеть предвзятость по отношению к применению алюминиевых проводов при новом строительстве. Это позволит применять выгодный, но трудоёмкий алюминий при разводках в панелях и в подводах к точкам внешней нагрузки (розетки и выключатели), что даст значительную экономию.

Алюминиевые обмоточные провода, могут с заметной выгодой, применяться в производстве маломощных трансформаторов, электродвигателей и других электрических машин.

Всё это определит огромный спрос на алюминий на мировом рынке и использование «крылатого металла» на земле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector