Приливные электростанции (пэс)

Теплофикационные станции (ТЭС). Назначение. Виды

ТЭС, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Среди ТЭС преобладают тепловые паротурбинные (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы.

ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. На ГРЭС вырабатывается около электроэнергии, производимой на ТЭС. ТПЭС, оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называемым теплоэлектроцентралями (ТЭЦ); ими вырабатывается около электроэнергии, производимой на ТЭС.

ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 С поступают в газовую турбину, вращающую электрогенератор. Кпд таких ТЭС обычно составляет 26-28%, мощность — до нескольких сотен Мвт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки.

ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, называется парогазовой электростанцией (ПГЭС). кпд которой может достигать 42 — 43%. ГТЭС и ПГЭС также могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ.

Тепловые электростанции используют широко распространенные топливные ресурсы, относительно свободно размещаются и способны вырабатывать электроэнергию без сезонных колебаний. Их строительство ведется быстро и связано с меньшими затратами труда и материальных средств. Но у ТЭС есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30-35%), оказывают крайне негативное влияние на экологическую обстановку. ТЭС сего мира ежегодно выбрасывают в атмосферу 200-250 млн. т золы и около 60 млн. т ернистого ангидрида, а также поглощают огромное количество кислорода. Установлено, что уголь в микродозах почти всегда содержит U238, Th232 и радиоактивный изотоп углерода. Большинство ТЭС России не оснащены эффективными системами очистки уходящих газов от оксидов серы и азота. Хотя установки, работающие на природном газе экологически существенно чище угольных, сланцевых и мазутных, вред природе наносит прокладка газопроводов (особенно в северных районах).

Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС). Они тяготеют и к источникам топлива, и к потребителям, и поэтому очень широко распространены.

Чем крупнее КЭС, тем дальше она может передавать электроэнергию, т.е. по мере увеличения мощности возрастает влияние топливно-энергетического фактора. Ориентация на топливные базы происходит при наличии ресурсов дешевого и нетранспортабельного топлива (бурые угли Канско-Ачинского бассейна) или в случае использования электростанциями торфа, сланцев и мазута (такие КЭС обычно связаны с центрами нефтепереработки).

ТЭЦ (теплоэлектроцентрали) представляют собой установки по комбинированному производству электроэнергии и теплоты. Их КПД доходит до 70% против 30-35% на КЭС. ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет 15-20 км. Максимальная мощность ТЭЦ меньше, чем КЭС.

В последнее время появились принципиально новые установки:

  • газотурбинные (ГТ) установки, в которых вместо паровых применяются газовые турбины, что снимает проблему водоснабжения (на Краснодарской и Шатурской ГРЭС);
  • парогазотурбинные (ПГУ), где тепло отработавших газов используется для подогрева воды и получения пара низкого давления (на Невинномысской и Кармановской ГРЭС);
  • магнитогидродинамические генераторы (МГД-генераторы), которые преобразуют тепло непосредственно в электрическую энергию (на ТЭЦ-21 Мосэнерго и Рязанской ГРЭС).

В России мощные (2 млн. кВт и более) построены в Центральном районе, в Поволжье, на Урале и в Восточной Сибири.

На базе Канско-Ачинского бассейна создается мощный топливно-энергетический комплекс (КАТЭК). В проекте предусмотрено строительство восьми ГРЭС мощностью по 6,4 млн. кВт. В 1989 г. был введен в строй первый агрегат Березовской ГРЭС-1 (0,8 млн. кВт).

Энергосистемы

Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Виды и варианты исполнения

Дизельные электростанции различаются по выходной электрической мощности, виду тока (переменный трёхфазный/однофазный, постоянный), выходному напряжению, а также частоте тока (например, 50, 60, 400 Гц).

Также дизельные электростанции разделяют по типу охлаждения дизельного двигателя, воздушному или жидкостному. Электростанции с дизельным двигателем жидкостного охлаждения — это агрегаты больших мощностей и размеров.

По назначению

  • Передвижные — электростанции мощностью, как правило, до 1000 кВт. Применяются в качестве переносного (портативные) или резервного источника электроснабжения. Зачастую представлены в специальном шумозащитном кожухе или контейнере со стандартными (разрешенными) транспортировочными габаритами.
  • Стационарные (промышленные) — электростанции, любой мощности и типа, интегрированные в единую систему энергокомплекса.

По конструктивному исполнению

  • Линейный или традиционный генератор вращения.
  • Открытого исполнения — базовое исполнение электростанции, предназначено для размещения электроустановки в специально оборудованном помещении.
  • В шумозащитном кожухе — для установки в помещение или на улице при наличии требований к снижению шума.
  • Контейнерные — монтаж электростанции в блок-контейнер осуществляется для эксплуатации установки в тяжелых климатических условиях и повышенной вандалозащищённости.
  • Электростанция может быть установлена в фургон, машину или на шасси. Таким образом, она приобретает статус мобильной электростанции.

По роду тока

Маломощные дизельные электростанции вырабатывают, как правило, однофазный переменный ток напряжением 220 В и/или трёхфазный напряжением 380 В.

Трёхфазные электростанции имеют более высокий КПД за счёт более высокого КПД генератора переменного тока.

Переносные дизельные электростанции с встроенным выпрямителем (инвертором) могут иметь дополнительный выход постоянного тока напряжением 12-14 вольт, например, для зарядки аккумуляторов.

Мощные дизельные электростанции вырабатывают трёхфазный ток:

  • низковольтные — с напряжением до 1 кВ;
  • высоковольтные — с напряжением более 1 кВ (6,3 кВ, 10 кВ).

Если необходимо передавать электроэнергию, выработанную низковольтными электростанциями, на значительные расстояние по линиям электропередачи, напряжение повышается на электрических подстанциях до 6,3 кВ или 10,5 кВ.

По типу генератора переменного тока

Синхронный генератор переменного тока

Так как частота переменного тока синхронного генератора определяется числом оборотов ротора (двигателя), то дизельная электростанция должна иметь механизм, обеспечивающий постоянное число оборотов дизельного двигателя независимо от нагрузки (генерируемой электрической мощности).
Частота переменного тока синхронного генератора будет: f=n60{\displaystyle f={\frac {n}{60}}},
где
f{\displaystyle f} — частота в герцах;
n{\displaystyle n} — число оборотов ротора в минуту.

Если генератор имеет число пар полюсов p{\displaystyle p}, то соответственно этому частота электродвижущей силы такого генератора будет
в p{\displaystyle p} раз больше частоты электродвижущей силы двухполюсного генератора: f=pn60{\displaystyle f=p{\frac {n}{60}}}.

ЭДС синхронного генератора регулируется изменением тока возбуждения.

Асинхронный генератор переменного тока

Асинхронный генератор может генерировать переменный ток произвольной, нестандартной частоты (значительно отличающейся, например, от используемой в промышленности и быту частоты 50 Гц). Переменный ток после выхода из генератора подвергается выпрямлению, затем получившийся постоянный ток инвертор преобразует в переменный ток с параметрами, определяемыми стандартом. Недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида.

ЭДС асинхронного генератора регулируется изменением числа оборотов двигателя и изменением тока возбуждения (если предусмотрено конструкцией генератора).

Асинхронные генераторы без встроенной системы «стартового усиления» плохо переносят длительные перегрузки, в отличие от синхронных.

Сварочные агрегаты

Особой разновидностью дизельных и бензиновых электростанций следует считать сварочные агрегаты, генерирующие постоянный или переменный ток для электродуговой сварки. Выходное электрическое напряжение относительно низкое (около 90 вольт), однако сила тока велика, электрические генераторы не боятся коротких замыканий.

Аэростатные солнечные электростанции

Солнечные аэростатные электростанции самые энергоэффективные электростанции, они способны собрать до 97% солнечной энергии, при этом этот тип сооружений занимает малые территории поверхности, так как расположенное на поверхности земли оборудование занимает слишком мало места, а громоздкий баллон аэростата с фотоэлектрическим слоем, расположен в воздухе и способен поглощать солнечные лучи практически полностью в любое время суток, независимо от погодных условий за счет способности подниматься и опускаться на необходимую высоту.

Особо стоит отметить, факт того, что расположение таких электростанций не ограничивается поверхностью земли и воды. Китайский ученый Ван Ли предположил такой вид электростанций для использования в горах Тибета, с расположением баллонов аэростатов выше слоя облаков, при этом электроэнергией по расчетам ученого обеспечатся не только высокогорные районы, но и близ лежащие Китайские провинции.

В России

Мутновская ГеоЭС

Основная статья: Геотермальная энергетика России

В СССР первая геотермальная электростанция была построена в 1966 году на Камчатке, в долине реки Паужетка. Её мощность — 12 МВт.

На Мутновском месторождении термальных вод 29 декабря 1999 года запущена в эксплуатацию Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт (на 2004 год).

10 апреля 2003 года запущена в эксплуатацию первая очередь Мутновской ГеоЭС, установленная мощность на 2007 год — 50 МВт, планируемая мощность станции составляет 80 МВт, выработка в 2007 году — 360,687 млн кВт·ч. Станция полностью автоматизирована.

2002 год — введен в эксплуатацию первый пусковой комплекс «Менделеевская ГеоТЭС» мощностью 3,6 МВт в составе энергомодуля «Туман-2А» и станционной инфраструктуры.

2007 год — ввод в эксплуатацию Океанской ГеоТЭС, расположенной у подножия вулкана Баранского на острове Итуруп в Сахалинской области, мощностью 2,5 МВт. Название этой электростанции связано с непосредственной близостью к Тихому океану. В 2013 г. на станции произошла авария, в 2015 г. станция была окончательно закрыта.

Название ГеоЭС Установленная мощность на конец 2010 года, МВт Выработка в 2010 году, млн кВт⋅ч Год ввода первого блока Год ввода послед­него блока Собственник Место расположения
Мутновская 50,0 360,7 (2007 год) 2003 2003 ПАО «Камчатскэнерго» Камчатский край
Паужетская 12,0 42,544 1966 2006 ПАО «Камчатскэнерго» Камчатский край
Верхне-Мутновская 12,0 63,01 (2006 год) 1999 2000 ПАО «Камчатскэнерго» Камчатский край
Менделеевская 3,6 ? 2002 2007 ЗАО «Энергия Южно-Курильская» о. Кунашир
Сумма 77,6 >466,3

Щит управления

Потёртые ступени лестницы XIX столетия ведут в святая святых — к главному щиту управления ГЭС-1. На нём расположены приборы и ключи управления всеми распределительными устройствами станции. Здесь несут круглосуточное дежурство сотрудники ГЭС-1, отвечающие за её надёжную работу. Среди них и начальник смены станции, которого в шутку называют ночным директором.

Приборы показывают частоту сети, напряжение и нагрузку трансформаторов, параметры генераторов турбин, параметры воды, которая уходит в городские сети.

Задача сотрудников на щите управления — следить за состоянием главной электрической схемы и надёжной работой оборудования, чтобы всё было исправно. Если что-то пошло не так, загорятся сигнальные табло, указывающие на оборудование, в котором произошёл сбой.

Выбор исполнения и опций

После того, как Вы определились с мощностью электростанции, её фазностью и типом, Вы уже можете выбрать нужную Вам генераторную установку из нашего каталога. Однако электростанции имеют различные варианты исполнения и опции. Заключительная часть выбора электростанции как раз и состоит в том, что бы определить необходимое дополнительное оборудование и опции.

Прежде всего необходимо определить как будет (или должна) запускаться электростанция. Возможны следующие варианты:

  • Ручной запуск с помощью шнура. Такой вид запуска бывает только на некоторых маломощных моделях портативных генераторов. Для запуска такого генератора необходимо быстро и сильно потянуть рукоятку шнура стартера. Данный вид запуска может быть затруднителен для людей, не обладающих достаточной силой.
  • Электростарт. Для запуска такой электростанции достаточно повернуть ключ зажигания, который находится на панели управления. Обычно такой вид запуска выбирается для частого использования,
  • Автозапуск. Данный вид запуска нужен, когда электростанция используется в качестве автоматического резервного источника. Наличие автозапуска означает, что при пропадании напряжения в сети электростанция запустится самостоятельно, а затем отключится, когда напряжения появится вновь.

После выбора типа запуска генераторной установки, следует определиться, где она будет установлена.

Следует помнить, что любая электростанция, которая снабжена автозапуском, должна быть установлена либо в отапливаемом помещении, либо в контейнере (кожухе) с подогревом. Автоматика автозапуска сработает, если окружающая температура не ниже +5 градусов. В противном случае, электростанция может не завестись автоматически при пропадании напряжения во внешней сети.

Стационарные генераторы имеют три основных варианта установки:

  • Электростанция в открытом исполнении — Только для работы внутри помещения, имеющего специальный фундамент, систему вентиляции (необходимы специальные жалюзи) и систему отвода выхлопных газов.
  • Электростанция в шумозащитном кожухе — Используется, когда к электростанции предъявляются требования по шумности. В некоторые модели кожухов (у электростанций большой мощности) можно установить подогрев (когда необходим автозапуск) для использования электростанции на улице. Правила установки кожуха в помещении — те же, что и для открытых электростанций. Стоит заметить, что кожух заводского исполнения снижает шум от электростанции гораздо значительнее, чем контейнер.

Теперь, после изучения всего раздела, Вы можете спокойно выбрать электростанцию, не боясь ошибиться.

Вы можете посмотреть тип и параметры электростанции на этой странице www.elektrik.net.ua

Если желаете удостовериться в правильности выбора — мы работаем для Вас. Удачной покупки!

Солнечные электростанции башенного типа (СЭС башенного типа)

Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров (в зависимости от мощности и некоторых других параметров высота может быть больше либо меньше), на вершине которой находится резервуар с водой. Этот резервуар покрыт чёрным цветом для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты.

Гелиостат — зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудоемкая задача — это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар.

В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20%) и высокие мощности.

Пример: СЭС, построенная в Крыму

Типы электростанций

Электростанции бывают различных типов, наиболее распространенными из которых являются:

  • Тепловые
  • Гидравлические
  • Атомные

Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.

Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.

Атомные станции функционируют на ядерном топливе и чаще всего размещаются в тех местах, где требуется электрическая энергия, но отсутствуют прочие источники сырья. Около 25 тонн топлива позволяют станции работать на протяжении нескольких лет. Действие АЭС не становится причиной увеличения парникового эффекта, а процесс выработки энергии осуществляется без загрязнения окружающей среды.

Домашние электростанции — все «за» и «против»

При производстве электричества выделяется значительное количество тепловой энергии. На мощных тепловых электростанциях излишки тепла выбрасываются в атмосферу через градирни.

Имея собственную, домашнюю мини–электростанцию можно на 100% использовать тепловую энергию для отопления и горячего водоснабжения. С учетом сегодняшних тарифов это более чем значительная экономия денег.

В летний период такое количество тепла может не понадобиться. Домашние электростанции смогут превратить эту тепловую энергию в холод для кондиционирования помещений. Но это стоит очень дополнительных денег.

Газовые электростанции не загрязняют окружающую среду и практически бесшумны в работе. Современные домашние электростанции энергоэффективны, имеют высокий КПД. Эта техническая особенность мини–электростанций дает немаловажную экономию денег при эксплуатации.

Позитивный фактор — отсутствие  обслуживающего персонала — контроль над работой микротурбин осуществляет компьютер. Датчики газовых утечек, пожарная и охранная системы делают эксплуатацию домашних микротурбин — электростанций максимально безопасной. Следует отметить хороший промышленный дизайн микротурбинных установок и их компактные размеры.

Если коттедж, дом или дача, имеют один этаж, то домашняя электростанция устанавливается в подсобных помещениях.

Электростанции Москвы, входящие в Мосэнерго

Коротко расскажем о них

  • — ГЭС-1 имени П.Г. Смидовича ОАО «Мосэнерго» (читай ниже)
  • — ТЭЦ-8. P=605 MВт Q=2192 Гкал/час, год основания — 1930, топливо — природный газ;
  • — ТЭЦ-9. P=210 MВт Q=560 Гкал/час, год основания — 1933, топливо — газ;
  • — ТЭЦ-11 им. М.Я. Уфаева. P=330 MВт Q=1011 Гкал/час, год основания — 1936, топливо — газ;
  • — ТЭЦ-12. P=412 MВт Q=2043 Гкал/час, год основания — 1941, топливо — газ;
  • — ТЭЦ-16. P=360 MВт Q=1484 Гкал/час, год основания — 1955, топливо — газ;
  • — ТЭЦ-20. P=730 MВт Q=2400 Гкал/час, год основания — 1952, топливо — газ;
  • — ТЭЦ-21. P=1800 MВт Q=4958 Гкал/час, год основания — 1963, топливо — газ;
  • — ТЭЦ-23. P=1420 MВт Q=4530 Гкал/час, год основания — 1966, топливо — газ;
  • — ТЭЦ-25. P=1370 MВт Q=4088 Гкал/час, год основания — 1975, топливо — газ;
  • — ТЭЦ-26. P=1840 MВт Q=4214 Гкал/час, год основания — 1979, топливо — газ;

ГЭС-1 имени П.Г. Смидовича ОАО «Мосэнерго»

Свою пользу эта электростанция начала приносить еще в 1897 году, когда была построена по указу императора Александра 3. Расположена она на Раушской набережной. За время своего долгого существования эта станция также носила названия — Раушская электростанция и МГЭС-1.

C момента основания и по наше время установленная электрическая мощность выросла с 3,3 МВт в 1897 году, до 86 МВт в наше время (2014 год). Установленная же тепловая мощность составляет 951 Гкал/ч. В качестве основного вида топлива с 1946 года используется природный газ, в качестве резервного вида топлива — мазут. До этого, с момента пуска использовалась нефть, а во времена Первой мировой войны — торф из Подмосковья.

Охраняется Юнеско, как исторический памятник. Потребителями электрической и тепловой электроэнергии с ГЭС-1 являются — Кремль, метрополитен, Лубянская площадь.

Литература

  • Конденсационная электростанция //  :  / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978..
  • Рыжкин В. Я. Тепловые электрические станции: Учебник для вузов / Под редакцией В. Я. Гиршфельда. — 3-е изд., перераб. и доп.. — М.: Энергоатомиздат, 1987. — 328 с.
  • Буров В. Д., Дорохов Е. В., Елизаров Д. П. и др. Тепловые электрические станции: Учебник для вузов / Под ред. В. М. Лавыгина, А. С. Седлова, С. В. Цанева. — 2-е изд., перераб. и доп. — М.: Издательский дом МЭИ, 2007. — 466 с.
  • Тепловые и атомные электрические станции: Справочник / Под общей редакцией В. А. Григорьева и В. М. Зорина. — 2-е изд., перераб. — М.: Энергоатомиздат, 1989. — 608 с.
  • Быстрицкий Г. Ф. Основы энергетики. — М.: Инфра-М, 2007. — ISBN 978-5-16-002223-9.

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65%, из которых 39% приходились на уголь, 16% на природный газ, 9% на жидкое топливо(2000г). В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%. Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%.

Газообразное

Естественным топливом является природный газ, искусственным:

  • Генераторный газ;
  • Коксовый газ;
  • Доменный газ;
  • Продукты перегонки нефти;
  • Газ подземной газификации;
  • Синтез-газ.

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

  • Бензин;
  • Керосин;
  • Соляровое масло;
  • Мазут.

Твёрдое

Естественным топливом являются:

Ископаемое топливо:

  • Торф;
  • Бурый уголь;
  • Каменный уголь;
  • Антрацит;
  • Горючий сланец;

Растительное топливо:

  • Дрова;
  • Древесные отходы;
  • Топливные брикеты;
  • Топливные гранулы.

Искусственным твёрдым топливом являются:

  • Древесный уголь;
  • Кокс и полукокс;
  • Углебрикеты;
  • Отходы углеобогащения.

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.

Ядерное топливо получают из природного урана, который добывают:

  • В шахтах (Франция, Нигер, ЮАР);
  • В открытых карьерах (Австралия, Намибия);
  • Способом подземного выщелачивания (США, Канада, Россия).

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3—5% для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.

Источник — http://www.gigavat.com/elektrostanciya.php

Котлы как на «Титанике»

Котельное отделение внешне выглядит не так привлекательно, зато у него историческая изюминка: здесь соседствуют самый новый котёл, установленный в 2012 году, и два самых старых. «Есть у нас ещё два котла “Бабкок — Вилькокс”, английских. В общем, такие же, как на “Титанике” стояли», — говорит главный инженер. С 1931 года их, конечно, ремонтировали, и они до сих пор работают исправно и надёжно. Менять эти котлы в ближайшем будущем всё же планируют, как, в принципе, всю устаревшую технику.

Здесь тоже есть свой щит управления, который показывает параметры работы энергетических котлов. Такой щит нужен для старых котлов, а новыми управляют операторы — машинисты котлов — с помощью компьютеров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector