Диаметр

Использование радиан

Я пока и сам привыкаю думать радианами. Но мы уже довольно близко подобрались к понятию «дистанции бегуна»:

  • Мы используем «вращений в минуту», а не «градусов в секунду» при измерении определенных угловых скоростей. Это ближе к точке зрения бегуна («Как много кругов он уже намотал?»)
  • Когда спутник движется вокруг Земли, мы понимаем его скорость как «километров в час», а не «градусов в час». Разделите эту скорость на расстояние от земли к спутнику, и вы получите орбитальную скорость в радианах в час.
  • Синус, эта замечательная функция, определяется в радианах, как:

Эта формула работает, только если х представлен в радианах! Почему? Синус непосредственно связан с пройденным путем, а не с поворотом головы. Но мы отложим эту беседу до следующего раза.

Определение угла.

Угол является одной из важнейших фигур в геометрии. Определение угла дается через определение луча. В свою очередь представление о луче невозможно получить без знания таких геометрических фигур как точка, прямая и плоскость. Поэтому, перед знакомством с определением угла, рекомендуем освежить в памяти теорию из разделов прямая на плоскости – необходимые сведения и плоскость – необходимые сведения.

Итак, будем отталкиваться от понятий точки, прямой на плоскости и плоскости.

Дадим сначала определение луча.

Пусть нам дана некоторая прямая на плоскости. Обозначим ее буквой a. Пусть O – некоторая точка прямой a. Точка O разделяет прямую a на две части. Каждая из этих частей вместе с точкой О называется лучом, а точка О называется началом луча. Еще можно услышать, что луч называют полупрямой.

Для краткости и удобства ввели следующие обозначения для лучей: луч обозначают либо малой латинской буквой (например, луч p или луч k), либо двумя большими латинскими буквами, первая из которых соответствует началу луча, а вторая обозначает некоторую точку этого луча (например, луч ОА или луч СD). Покажем изображение и обозначение лучей на чертеже.

Теперь мы можем дать первое определение угла.

Определение.

Угол – это плоская геометрическая фигура (то есть целиком лежащая в некоторой плоскости), которую составляют два несовпадающих луча с общим началом. Каждый из лучей называют стороной угла, общее начало сторон угла называют вершиной угла.

Возможен случай, когда стороны угла составляют прямую линию. Такой угол имеет свое название.

Определение.

Если обе стороны угла лежат на одной прямой, то такой угол называется развернутым.

Предлагаем Вашему вниманию графическую иллюстрацию развернутого угла.

Для обозначения угла используют значок угла «». Если стороны угла обозначены малыми латинскими буквами (например, одна сторона угла k, а другая h), то для обозначения этого угла после значка угла записывают подряд буквы, соответствующие сторонам, причем порядок записи значения не имеет (то есть, или ). Если стороны угла обозначены двумя большими латинскими буквами (к примеру, одна сторона угла OA, а вторая сторона угла OB), то угол обозначают следующим образом: после значка угла записывают три буквы, участвующие в обозначении сторон угла, причем буква, отвечающая вершине угла, располагается посередине (в нашем случае угол будет обозначен как или ). Если вершина угла не является вершиной еще какого-нибудь угла, то такой угол можно обозначать буквой, соответствующей вершине угла (например, ). Иногда можно видеть, что углы на чертежах отмечают цифрами (1, 2 и т.д.), обозначают эти углы как и так далее. Для наглядности приведем рисунок, на котором изображены и обозначены углы.

Любой угол разделяет плоскость на две части. При этом если угол не развернутый, то одну часть плоскости называют внутренней областью угла, а другую – внешней областью угла. Следующее изображение разъясняет, какая часть плоскости отвечает внутренней области угла, а какая — внешней.

Любую из двух частей, на которые развернутый угол разделяет плоскость, можно считать внутренней областью развернутого угла.

Определение внутренней области угла приводит нас ко второму определению угла.

Определение.

Угол – это геометрическая фигура, которую составляют два несовпадающих луча с общим началом и соответствующая внутренняя область угла.

Следует отметить, что второе определение угла строже первого, так как содержит больше условий. Однако не следует отметать первое определение угла, также не следует рассматривать первое и второе определения угла по отдельности. Поясним этот момент. Когда речь идет об угле как о геометрической фигуре, то под углом понимается фигура, составленная двумя лучами с общим началом. Если же возникает необходимость провести какие-либо действия с этим углом (например, измерение угла), то под углом уже следует понимать два луча с общим началом и внутренней областью (иначе возникла бы двоякая ситуация из-за наличия как внутренней так и внешней области угла).

Дадим еще определения смежных и вертикальных углов.

Определение.

Смежные углы – это два угла, у которых одна сторона общая, а две другие образуют развернутый угол.

Из определения следует, что смежные углы дополняют друг друга до развернутого угла.

Определение.

Вертикальные углы – это два угла, у которых стороны одного угла являются продолжениями сторон другого.

На рисунке изображены вертикальные углы.

Очевидно, что две пересекающиеся прямые образуют четыре пары смежных углов и две пары вертикальных углов.

Способ 4: сочетание клавиш

Зажмите клавишу Alt и поочередно введите код 0216 . Цифры обязательно вводите на цифровом блоке (справа на клавиатуре), иначе ничего не получится. Поэтому такой способ не подойдет для владельцев некоторых ноутбуков.

Характеристики знака диаметра

Построение чертежей – дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Литература

  • Барабанов О.О. Начала истории прямого угла // История науки и техники, 2015. №1. С. 16-27.*
  • Сидоров Л. А. Угол // Математическая энциклопедия / И. М. Виноградов (гл. ред.). — М.: Советская энциклопедия, 1985. — Т. 5. — С. 459‒460. — 623 с. — 150 000 экз.
  • Двугранный угол // Математическая энциклопедия / И. М. Виноградов (гл. ред.). — М.: Советская энциклопедия, 1979. — Т. 2. — С. 50. — 552 с. — 150 000 экз.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 30‒31. — ISBN 5-94057-170-0.
  • Угломерные приборы/Угол (плоский) // Большая Советская энциклопедия (в 30 т.) / Гл. ред. А. М. Прохоров. — 3-е изд. — М.: «Советская Энциклопедия», 1977. — Т. XXVI. — С. 459‒460. — 624 с.
  • K. Menger. New Fondations of Euclidean Geometry (англ.) // THE AMERICAN JOURNAL OF MATHEMATICS 53 : журнал. — 1931. — P. 721‒745.

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как «radius». Отсюда и общепринятое сокращение: строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: «diameter». Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Полный угол

Мы уже решили, что угол это мера поворота одного луча вокруг начала двух лучей при условии сохранения одного луча неподвижным. А что будет, если провернуть один луч до такой степени, что оба луча совпадут? Получится тот самый полный угол, мера которого составляет 360 градусов. Внешне такой угол похож на луч, но представляет собой два совпавших луча.

А что будет, если на каком-то расстоянии от начала лучей прикрепить карандаш, а потом провернуть луч на полный угол? Получится окружность.

Полный угол с градусной мерой в 360 градусов и нулевой угол с градусной мерой в 0 градусов выглядят одинаково. Но, если полный угол – это луч, провернутый до совпадения со вторым лучом, то нулевой угол – это два луча, ни один и которых еще не поворачивали.

Что мы узнали?

Мы рассмотрели, какие бывают углы. Выделили основные виды углов, в отдельности рассмотрели полный угол и градус полного угла. А также сравнили полный угол с нулевым углом.

Обозначение резьбы на чертеже

При более жестких тре-

бованиях в отсчеты по рулетке вводят поправку за компарирование и применяют соответствую-

щую методику наблюдений на станции или более высокоточные инструменты.

Нивелирование дна и откоса котлована. Перед зачисткой дна котлована на всей его пло-щади разбивают сетку, которая обычно образуется от пересечения продольных и поперечных осей. В вершинах сетки забивают колья с таким расчетом, чтобы верхний срез их был как можно

ближе к проектной отметке дна котлована. Затем нивелированием определяют проектные отметки торцов кольев. Между этими опорными точками забивают дополнительные колья через 3 – 5 м и

с помощью трех визирок получают проектные отметки дна котлована. При этом две постоянные

визирки устанавливают на опорные точки, а третью – ходовую – ставят на кол между постоянны-ми визирками. Ударяя по торцу кола, где установлена ходовая визирка, добиваются того, чтобы верх трех визирок находился на одной прямой.

Работы по зачистке котлована завершаются исполнительной съемкой и составлением испол-

нительной схемы, на которой показывают фактические и проектные отметки дна котлована (рис.9).

рис.9. Исполнительная схема котлована

При зачистке откоса котлована применяют откосный прямоугольный треугольник (рис. 10 ,а),

Откосное лекало (рис. 10, б) или направляющую доску (рис. 10,в).

Рис.10. Устройства для зачистки откосов котлована

12

Дата добавления: 2015-12-22; просмотров: 801;

См. также

  • Углы Эйлера
  • Двугранный угол
  • Трёхгранный угол
  • Телесный угол
  • Азимут (геодезия)
  • Магнитный азимут
  • Азимут (астрономия)
  • Угловой размер
  • Угол места
  • Угол скольжения
  • Румб
  • Кастор (угол)
  • Золотое сечение
  • Угол обзора
  • Угол поля зрения объектива
  • Угловое разрешение
  • Угол поворота
  • Угол (наклона, уклона)
  • Угловая скорость (& CAV)
  • Угловое ускорение
  • Угловая частота
  • Угловой коэффициент (Линейная функция)
  • Изогона
  • Закон постоянства углов
  • Решение треугольников
  • Ортогональность
  • Тригонометрия
  • Пентагон (значения)
  • Полигонометрия
  • Триангуляция
  • Позиционный угол и Угловое расстояние (Полярные координаты)
  • Аспект (астрология)
  • Склонение (астрономия) и Часовой угол (Системы небесных координат)
  • Дирекционный угол
  • Тригонометрический параллакс & Параллактический угол
  • Астрономическая рефракция

Виды углов

Разделяют несколько видов углов:

Острый, то есть угол, градусная мера которого меньше 90 градусов. Такое название угол берет за острый носик, который чем-то напоминает наконечник копья.

Тупой, то есть угол, градусная мера которого больше 90 градусов. Если копье оббить до состояния, когда им проколоть ничего не получится, то его наконечник можно будет назвать тупоугольным.

Прямой, то есть угол, градусная мера которого равняется 90 градусам. Прямой угол во всем мире считается красивым и правильным

Обратите внимание, сколько мебели в классе или любой комнате сделано из досок под прямыми углами: шкафы, столы, подоконники, кухонные уголки и многое другое.

Развернутый, то есть угол, градусная мера которого равняется 180 градусам. Если угол развернуть до такой степени, что оба луча станут совпадать, то есть лежать на одной прямой, то получится именно развернутый угол.

Полный угол, градусная мера которого равняется 360 градусов

Именно об этом типе углов мы поговорим подробнее.

Величины

Площадь, длина, ширина, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения — это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Вариации и обобщения

Понятие диаметра допускает естественные обобщения на некоторые другие геометрические и математические объекты. Если во множестве некоторых объектов определена метрика пространства, то для подмножества этих объектов может быть введено понятие диаметра множества.

Диаметром множества M{\displaystyle M}, лежащего в метрическом пространстве с метрикой ρ{\displaystyle \rho }, называется величина (supx,y∈Mρ(x,y)){\displaystyle (\sup _{x,y\in M}\rho (x,y))}.

Под диаметром метрического пространства понимается точная верхняя грань расстояний между парой любых его точек.

  • В частности:
    • Под диаметром конического сечения понимается прямая проходящая через середины двух параллельных хорд.
    • Диаметр графа — это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние измеренное в количестве рёбер между двумя вершинами графа, максимально удалёнными друг от друга.
    • Максимальное расстояние Хэмминга между двумя словами равной в символах длины n{\displaystyle n} равно n{\displaystyle n}, другими словами диаметр множества слов в метрике Хэмминга равен n{\displaystyle n}.
    • Диаметр геометрической фигуры — максимальное расстояние между точками этой фигуры.

Например, диаметр n-размерного гиперкуба со стороной s равен

d=s⋅n{\displaystyle d=s\cdot {\sqrt {n}}}.

Плоские углы

Термин плоский угол употребляется как синоним термина угол, определённого в начале статьи, для отличия его от употребляемого в стереометрии понятия (в том числе двугранного, трёхгранного или многогранного угла).

Под свойствами плоских углов нередко понимают соотношения величин углов (смежных, дополнительных, прилегающих, вертикальных — см. ниже) в случае, когда углы лежат в одной плоскости (для планиметрии это подразумевается само собой, однако для стереометрии уточнение необходимо, иначе перечисленные ниже соотношения не имеют места, а сами углы, если не лежат в одной плоскости, не называются смежными или прилегающими (вертикальные всегда лежат в одной плоскости автоматически).

Вертикальные и прилежащие углы

  • Вертикальные углы — два угла, которые образуются при пересечении двух прямых, эти углы не имеют общих сторон. Другими словами — два угла называют вертикальными, если стороны одного угла являются продолжением сторон другого. Их основное свойство: вертикальные углы равны.
  • Прилежащие углы — два угла, имеющие общую вершину и одну из сторон, но не пересекающиеся внутренними областями, лежащими в одной плоскости. Величина угла, образованного внешними (не общими) сторонами прилежащих углов равна сумме величин самих прилежащих углов (на рисунке α + β).

Частные случаи прилежащих углов.

Плоские углы с (анти)параллельными сторонами

Углы с параллельными сторонами.

Углы, стороны которых попарно параллельны и сонаправлены (или попарно параллельны и противоположно направлены), равны друг другу. Пара углов, у которых одна пара сторон параллельна и сонаправлена друг другу, а вторая пара сторон параллельна и противоположно направлена, составляют в сумме по величине развёрнутый угол, то 180° (см. рисунок) — поскольку их можно параллельным переносом превратить в смежные углы («склеив» сонаправленные стороны).

Внешний угол треугольника

Основная статья: Теорема о внешнем угле треугольника

Теорема о внешнем угле треугольника. Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с внешним углом.

Углы многоугольника

Основная статья: Теорема о сумме углов многоугольника

Сумма внутренних углов αi произвольного n-угольника без самопересечений равна ∑i=1nαi=(n−2)⋅180∘.{\displaystyle \sum _{i=1}^{n}\alpha _{i}=(n-2)\cdot 180^{\circ }.}

Так,

  • сумма внутренних углов треугольника равна 180°,
  • четырёхугольника — 360°,
  • пятиугольника — 540° и так далее.

Следствие

Назовём внешним углом βi (внимание, это не обычное определение внешнего угла) угол, дополняющий внутренний угол αi до полного угла: βi = 360° − αi.

Сумма внешних углов произвольного n-угольника без самопересечений равна ∑i=1nβi=n⋅360∘−∑i=1nαi=(n+2)⋅180∘.{\displaystyle \sum _{i=1}^{n}\beta _{i}=n\cdot 360^{\circ }-\sum _{i=1}^{n}\alpha _{i}=(n+2)\cdot 180^{\circ }.}

Пример 1: Колеса автобуса

Давайте попробуем разобрать реальный пример: у вас есть автобус с колесами, радиус которых 2 метра (это автобус в стиле монстр-трак). Я скажу, как быстро вращаются колеса, а вы мне скажете, как быстро едет автобус. Готовы? «Колеса вращаются со скоростью 2000 градусов в секунду». Вы думаете:

Хорошо, колеса вращаются на 2000 градусов в секунду. Это значит, они делают 2000/360 или 5 и 5/9 оборота в секунду. Длина окружности = 2*π*r, так что автобус движется со скоростью, эм, 2 * 3.14 * 5 и 5/9… где же мой калькулятор…

«Колеса проходят 6 радиан в секунду». Вы подумаете:

Радианы — это длина единичной окружности, мы просто масштабируем эту величину согласно реальному радиусу, чтобы рассчитать, как далеко мы уедем. 6 * 2 = 12 метров в секунду. Следующий вопрос.

Вау! Никаких сумасшедших формул, никакого π — просто умножаем, чтобы конвертировать угловую скорость в линейную. А всё потому, что радианы говорят на языке движущегося тела.

Обратное действие также простое. Предположим, что мы несёмся 30 метров в секунду по автостраде (108 км/ч) на 24-дюймовых колесах (радиус которых равен 30 см). Как быстро вращаются колеса?

Ну, 30 метров в секунду / 0.3 м радиуса = 100 радианов в секунду.

Это было просто.

Вариации и обобщения

Величиной ориентированного угла между прямыми AB{\displaystyle AB}и CD{\displaystyle CD} (обозначение: ∠(AB,CD){\displaystyle \angle (AB,CD)}) называют величину угла, на который нужно повернуть против часовой стрелки прямую AB{\displaystyle AB} так, чтобы она стала параллельна прямой CD.{\displaystyle CD.} При этом углы, отличающиеся на n·180° (n — целое число), считаются равными. Следует отметить, что ориентированный угол между прямыми CD{\displaystyle CD} и AB{\displaystyle AB} не равен ориентированному углу между прямыми AB{\displaystyle AB} и CD{\displaystyle CD} (они составляют в сумме 180° или, что по нашему соглашению то же самое, 0°). Ориентированные углы обладают следующими свойствами: а) ∠(AB,BC)=−∠(BC,AB);{\displaystyle \angle (AB,BC)=-\angle (BC,AB);} б) ∠(AB,CD)+∠(CD,EF)=∠(AB,EF);{\displaystyle \angle (AB,CD)+\angle (CD,EF)=\angle (AB,EF);} в) точки A,B,C,D,{\displaystyle A,B,C,D,} не лежащие на одной прямой, принадлежат одной окружности тогда и только тогда, когда ∠(AB,BC)=∠(AD,DC).{\displaystyle \angle (AB,BC)=\angle (AD,DC).}

Ряд практических задач приводит к целесообразности рассматривать угол как фигуру, получающуюся при вращении фиксированного луча вокруг точки О (из которой исходит луч) до заданного положения. В этом случае угол является мерой поворота луча. Такое определение позволяет обобщить понятие угла, расширив его область определения на всю числовую прямую (−∞;+∞){\displaystyle (-\infty ;+\infty )}: вводятся углы, большие 360°, в зависимости от направления вращения различают положительные и отрицательные углы. В тригонометрии такое рассмотрение позволяет изучать тригонометрические функции для любых значений аргумента.

Понятие угла обобщается на рассматриваемый в стереометрии телесный угол.

Телесный угол

Основная статья: Телесный угол

Обобщением плоского угла на стереометрию является телесный угол — часть пространства, которая является объединением всех лучей, выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол).

Телесные углы измеряются в стерадианах (одна из основных единиц СИ), а также во внесистемных единицах — в частях полной сферы (то есть полного телесного угла, составляющего 4π стерадиан), в квадратных градусах, квадратных минутах и квадратных секундах.

Телесными углами являются, в частности, следующие геометрические тела:

  • двугранный угол — часть пространства, ограниченная двумя пересекающимися плоскостями;
  • трёхгранный угол — часть пространства, ограниченная тремя пересекающимися плоскостями;
  • многогранный угол — часть пространства, ограниченная несколькими плоскостями, пересекающимися в одной точке.

Двугранный угол может характеризоваться как линейным углом (углом между образующими его плоскостями), так и телесным углом (в качестве вершины может быть выбрана любая точка на его ребре — прямой пересечения его граней). Если линейный угол двугранного угла (в радианах) равен φ, то его телесный угол (в стерадианах) равен 2φ.

Угол между кривыми

Угол между двумя кривыми в точке Р определяется как угол между касательными А и В в P.

Как в планиметрии, так и в стереометрии, а также в ряде других геометрий можно определить угол между гладкими кривыми в точке пересечения: по определению, его величина равна величине угла между касательными к кривым в точке пересечения.

Радианы: скажи эгоизму нет

Многие вещи из физики (да и из жизни!) заставляет нас вылезти из своей привычной системы координат и посмотреть на вещи с другой точки. Вместо того, чтобы вычислять поворот своей головы, задумайтесь, как далеко продвинулся бегун.

Градусы измеряют уголы по повороту головы. А радианы измеряют углы по пройденной дистанции.

Но само по себе расстояние не особо полезно, так как дистанция в 10 км может состоять из разного количества кругов, всё зависит от длины самого круга. Так что мы делим пройденную дистанцию на радиус круга, чтобы получить приведенный угол:

Вы часто будете встречать эту же формулу в таком виде:

угол в радианах (тета) — это длина дуги (s), поделенная на радиус (r).

Окружность описывает 360 градусов или 2π радиан — пройти весь круг будет 2*π* r / r. То есть, радиан — это примерно 360 /(2 * π) или 57.3 градусов.

Надеюсь, вы не будете думать, как я: «Ну вот, еще одна непонятная единица. 57.3 — такое странное число». Оно странное только потому, что вы всё еще думаете о себе!

Пройти 1 радиан (единицу) — вполне себе нормальная дистанция для путешествия.

Другими словами, наш «чистый, ровный угол в 90°» означает то же, что и непонятные π/2 единицы для пройденного бегуном пути. Подумайте об этом: «Эй, парень, а не пробежишь ли ты для меня еще 90°? Сколько это? А, ну да, для тебя это будет π/2 километра». Для бегуна дистанция в градусах выглядит также странно, как и поворот в радианах для зрителя.

Радианы в математике — это как бы поставить себя на место другого: передвинуть свою точку зрения с поворота головы на движение бегуна.

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как «radius». Отсюда и общепринятое сокращение: строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: «diameter». Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Радианы спорят с градусами

Градус — это то, насколько мне, стоя в центре стадиона, приходится повернуть голову, чтобы увидеть человека, бегущего по беговой дорожке.

Представьте, что вы заметили друга, бегущего по огромному кругу:
— Привет, как далеко ты добежал?
— Ну, пробежался я нехило, около 10 километров.
— Ты что, совсем? Как сильно я повернул свою голову, чтобы тебя увидеть?
— Что?
— Я поясню словами покороче для непонятливых. Я в центре круга. Ты бежал вокруг. Насколько… я… повернул… свою… голову?
— Придурок.

Эгоистично, не так ли? Вот как вся эта математика построена! Мы пишем уравнения по типу «Слушай, как сильно я повернул свою голову, чтобы увидеть движущуюся планету/маятник/колесо?» Я уверен, что вы никогда не думали о том, что чувствует, о чем мечтает и на что надеется маятник. Это эгоистичный подход. Не кажется ли вам, что уравнения должны быть простыми не только для зрителя, но и для самого бегуна?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector