Производство кокса: технология и особенности

Надёжность вибрационной мельницы серии BTM

В 1980-х годах исследовательский институт горного машиностроения в городе Шицзячжуан в рамках проекта задачи государственного фонда КНР произвел внедрение немецких технологий и уже в 1991 году получил государственный патент, а в 1993 был удостоен национальной премии за научно-технический прогресс. Технический уровень серии вибрационных мельниц средней амплитуды достиг международного передового уровня. После 2000 года, достигнув вышеупомянутых результатов, компания Гонбэй с учетом всех особенностей измельчения коксовой пыли разработала специальную мельницу серии BTM для измельчения коксовой пыли. Запатентованные технологии решают проблему износостойкости футеровок: амплитуда, пружины, система синхронизации и рабочая среда — все это запатентованные конструкции, разработанные в соответствии с характеристиками кокса. Надежность мельницы отражается в следующих аспектах:

1. Надежность вибратора (Немецкая технология)

В вибраторе используются запатентованные вибрационные подшипники, а также система водяного охлаждения с использованием сотовидных лопастей, которая позволяет снизить объем тепла, выделяемого валами на 30%, а так же повышает эффективность теплопередачи в камере подшипника более чем в три раза, что обеспечивает бесперебойную работу подшипников в более низком температурном режиме и повышает срок службы валов до 30000 часов.

2. Улучшенная прочная конструкция

Посредством комплексного наблюдения за силой вибрации, ее амплитудой и направлением, напряжением в отдельных точках всей конструкции, а так же с помощью конечно-элементного анализа и расчета упругости было определено различное понимание общей прочности всего корпуса и прочности его отдельных частей. Оптимальное проектирование, охватывающее все эти аспекты, позволяет достичь наибольшей усталостной прочности при наименьшем увеличении количества вибрации. 

3. Запатентованный механизм крепления

Крепление футеровки на вибрирующем корпусе ранее представляло большую сложность. Теперь данный запатентованный механизм не только решил проблему ослабления болтов, но даже удвоил срок службы футеровки. 

4. Уменьшение уровня шума и амортизация

Установка системы амортизации между футеровкой и мельничным барабаном обеспечивает непрерывную и равномерную передачу усилия среде материала и ослабляет силу удара, передающуюся от материала к оборудованию, что позволяет поднять срок службы оборудования до трех раз. Также эта система способна снизить уровень шума. 

5. Улучшенная система амортизации оборудования

Рабочий диапазон вибратора и система амортизации, состоящая из корпуса и пружин, представляют собой единую целостную систему, задача которой обеспечивать работу оборудования в пределах диапазона ее упругости. Рабочая частота данной системы не должна входить в резонанс с рабочей частотой самого оборудования. Таким образом, можно достичь гарантии срока службы и надежности всего оборудования. 

6. Качественные резиновые амортизаторы

Амортизаторы, изготовленные из импортной высококачественной резины, показали более высокую усталостную долговечность и надежность, чем стальные пружины.Благодаря надежности вышеупомянутых технологий, вибрационная мельница BTM имеет высокую эксплуатационную надежность при работе в промышленных условиях. В производственной практике зарубежных стран срок службы данного оборудования составляет более 20 лет, что подтверждает его надежность на реальном примере эксплуатации пользователем.

Получение

Нефтяной кокс получают в процессе коксования нефтяных остатков – т.е. их переработки без доступа воздуха при температуре 450…520 °С. В качестве сырья используются гудрон, крекинг-остатки, тяжелые газойли каталитического крекинга, смолы пиролиза, остатки масляного производства.

При этом основным источником коксообразования являются смолисто-асфальтеновые вещества, которые содержатся в перечисленном выше сырье. В зависимости от типа сырья и способа коксования, продукт получается различного качества.

Сырье для получения нефтяного кокса — тяжелые нефтяные остатки – представляют собой системы, состоящие из наборов сложных структурных единиц (ССЕ), элементами которых являются надмолекулярные структуры и окружающие их области – так называемые сольватокомплексы.

Надмолекулярные структуры образованы высокомолекулярными веществами (преимущественно — смолисто-асфальтеновыми и др.), которые удерживаются друг с другом ван-дер-ваальсовыми силами.

Сольватокомплексы — соединения с более низкой молекулярной массой (полициклические ароматические углеводороды, парафины), и, соответственно, менее склонные к межмолекулярным взаимодействиям.

Специфические физические свойства, такие как структурно-механическая неустойчивость, способность к расслоению и низкая летучесть, нефтяному сырью придают именно надмолекулярные структуры. Таким образом, наличие в составе этих структур влияет на кинетику процесса коксования и качество нефтяного кокса.

Внутренняя структура нефтяного сырья поддается контролируемой перестройке путем различного воздействия, например изменению температуры и скорости нагрева, введения присадок и пр. Возможность регулирование размеров элементов внутренней структуры, в свою очередь, позволяет получать кокс с заданными свойствами и структурой.

Вместе с металлургией

Главный рынок потребления игольчатого кокса — металлургия. Это связано с уникальными свойствами продукта — высокоструктурированного, с низким коэффициентом термического расширения, высокой удельной плотностью, механической прочностью, высоким содержанием графита и низким уровнем содержания серы, азота и золы. То есть обладающего оптимальным набором характеристик для производства сверхмощных графитированных электродов (марки UHP/ЭГСП), которые работают при повышенных плотностях тока. Они применяются при производстве спецстали методом EAF (electric arc furnace) — в электродуговых печах и печах-ковшах для внепечной обработки стали. По сравнению с обычным электродным коксом игольчатый обладает более высокой термостойкостью и существенно снижает расход электродов на тонну выплавляемой стали. Равноценной замены игольчатому коксу в настоящее время не существует.

Соответственно, объемы потребления игольчатого кокса напрямую связаны с уровнем спроса на высококачественные стали и распространением метода EAF. А значит, рынок игольчатого кокса ожидает только рост. За первое десятилетие XXI века объем выпуска электросталей в мире удвоился, и ожидается, что во втором динамика будет практически такой же: рост с 443 млн тонн электросталей в 2011 году до 903 млн тонн в 2020-м.

Производство игольчатого кокса развивается вместе с изменениями на металлургическом рынке. На данный момент предприятия США, Великобритании и Японии выпускают 880 тыс. тонн продукции ежегодно. К 2025 году эта цифра может вырасти до 1,2 млн тонн.

В России прогнозируемый рост производства электросталей не так высок (с 21 млн тонн в 2011-м до 27 млн тонн в 2020-м), однако тенденция также позитивная. Увеличение объемов выплавки электростали российскими предприятиями к 2020 году приведет к росту потребности в графитированных электродах отдельных марок на 60%. Сегодня в России ежегодно используется около 30 тыс. тонн сырья. По экспертным оценкам, к 2025 году эта цифра должна вырасти до 150 тыс. тонн. При этом уже на протяжении 40 с лишним лет отечественные производители электродов, а значит, и российская металлургия находятся в полной зависимости от поставок игольчатого кокса из-за рубежа.

Впрочем, в зависимости этой находятся не только металлурги: игольчатый кокс используется в том числе для изготовления углеродных изделий в оборонной, электронной и атомной промышленности. И это уже выводит проблему на уровень национальной промышленной безопасности.

Сравнительная характеристика видов кокса

Кокс электродный

Кокс игольчатый

Действительная плотность, г/см3

2,02-2,12

2,14-2,15

Массовая доля серы, %

1,5-2

0,38-0,46

Зольность, %

0,6

0,01-0,06

Массовая доля общей влаги, %

0,5

0,02-0,1

Коэффициент термического расширения, 10-7/°С

1,0-1,6

Основные производители на территории страны

Сегодня на территории России создан крупный промышленный холдинг (ПМХ) в состав, которого входят предприятия, производящие кокс.

коксовый цех

Параллельно с этим работает, входящий в группу НЛМК – ОАО «Алтай-кокс», . Хотя именно это предприятия стартовало только в 1981 году, Алтайский край один из первых принял участие в развитии коксовой промышленности в целом. Начало было положено еще в середине 17 века. Сегодня город Заринск фактически существует за счет того, что было открыто предприятие «Алтай-кокс», только в 2006 оно вошло в состав «Новолипецкого металлургического комбината». Поставки идут для многих зарубежных партнеров.

Также известен далеко за пределами России Московский коксогазовый завод, сокращенно «Москокс». Одной из отраслей предприятия является производство кокса для нужд промышленности. “Московский коксогазовый завод” входит в группу “Мечел”.

Часть территории “Московского газового завода” – на фото коксовые батареи, где запекается уголь

Еще одно крупное предприятие, которое невозможно не упомянуть – “Череповецкий металлургический комбинат” – это второй по величине сталелитейный комбинат в России, входит в состав группы компаний “Северсталь”. Имеет в своем составе коксохимическое производство.

Коксовый цех Череповецкого металлургического комбината

Коксование углей

Коксотушильный вагон перед башней мокрого тушения

Внешние изображения

Широко распространённый технологический процесс, состоящий из следующих стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов.

Подготовка включает обогащение (для удаления минеральных примесей) низкосернистых, малозольных, коксующихся углей, измельчение до зёрен размером около 0,3 мм, смешение нескольких сортов угля, сушка полученной шихты.

Коксовая печь — технологический агрегат, в котором осуществляется коксование каменного угля (на заводе бездымного топлива, Южный Уэльс)

Для коксования шихту загружают в щелевидную коксовую печь (ширина 400—450 мм, объём 30—40 м3). Каналы боковых простенков печей, выложенных огнеупорным кирпичом, обогреваются продуктами сгорания газов: коксового (чаще всего), доменного, генераторного, их смесей и др.

Продолжительность нагрева составляет 14—16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75—78 % от массы исходного угля) в виде так называемого «коксового пирога» (спёкшейся пластической массы) — выталкивается специальными машинами («коксовыталкивателями») в железнодорожные вагоны, в которых охлаждается («тушится») водой или газом (азотом).

При 250 градусах Цельсия из угля испаряется вода, улетучиваются угарный газ и углекислый газ, при 350 градусах улетучиваются углеводороды, соединения азота и фосфора, при 500 градусах происходит спекание — образуется полукокс, при 700 градусах и больше улетучивается водород и образуется кокс.

Парогазовая смесь выделяющихся летучих продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 70 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25—35 °C). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от NH3 и H2S, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ (14—15 % от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.

Из надсмольной воды (9—12 % от массы угля) отгонкой с паром выделяют: NH3 (в виде концентрированной аммиачной воды), фенолы, пиридиновые основания. Очищенную воду после разбавления технической водой направляют на тушение кокса или на биологическую очистку сточных вод на очистные сооружения.

Каменноугольная смола (3—4 % от массы угля) является сложной смесью органических веществ (в настоящее время идентифицировано только ~60 % компонентов смолы — более 500 веществ). Смолу методом ректификации подвергают разделению на фракции: нафталиновую, поглотительную, антраценовую и каменноугольный пёк. Из них, в свою очередь, кристаллизацией, фильтрованием, прессованием и химической очисткой выделяют: нафталин, антрацен, фенантрен, фенолы и каменноугольные масла.

Коксохимические заводы являются одним из крупнейших потребителей каменного угля — до ¼ мировой добычи.

Коксование углей

Коксотушильный вагон перед башней мокрого тушения

Внешние изображения

Широко распространённый технологический процесс, состоящий из следующих стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов.

Подготовка включает обогащение (для удаления минеральных примесей) низкосернистых, малозольных, коксующихся углей, измельчение до зёрен размером около 0,3 мм, смешение нескольких сортов угля, сушка полученной шихты.

Коксовая печь — технологический агрегат, в котором осуществляется коксование каменного угля (на заводе бездымного топлива, Южный Уэльс)

Для коксования шихту загружают в щелевидную коксовую печь (ширина 400—450 мм, объём 30—40 м3). Каналы боковых простенков печей, выложенных огнеупорным кирпичом, обогреваются продуктами сгорания газов: коксового (чаще всего), доменного, генераторного, их смесей и др.

Продолжительность нагрева составляет 14—16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75—78 % от массы исходного угля) в виде так называемого «коксового пирога» (спёкшейся пластической массы) — выталкивается специальными машинами («коксовыталкивателями») в железнодорожные вагоны, в которых охлаждается («тушится») водой или газом (азотом).

При 250 градусах Цельсия из угля испаряется вода, улетучиваются угарный газ и углекислый газ, при 350 градусах улетучиваются углеводороды, соединения азота и фосфора, при 500 градусах происходит спекание — образуется полукокс, при 700 градусах и больше улетучивается водород и образуется кокс.

Парогазовая смесь выделяющихся летучих продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 70 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25—35 °C). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от NH3 и H2S, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ (14—15 % от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.

Из надсмольной воды (9—12 % от массы угля) отгонкой с паром выделяют: NH3 (в виде концентрированной аммиачной воды), фенолы, пиридиновые основания. Очищенную воду после разбавления технической водой направляют на тушение кокса или на биологическую очистку сточных вод на очистные сооружения.

Каменноугольная смола (3—4 % от массы угля) является сложной смесью органических веществ (в настоящее время идентифицировано только ~60 % компонентов смолы — более 500 веществ). Смолу методом ректификации подвергают разделению на фракции: нафталиновую, поглотительную, антраценовую и каменноугольный пёк. Из них, в свою очередь, кристаллизацией, фильтрованием, прессованием и химической очисткой выделяют: нафталин, антрацен, фенантрен, фенолы и каменноугольные масла.

Коксохимические заводы являются одним из крупнейших потребителей каменного угля — до ¼ мировой добычи.

Основные отличия сырья для металлургической отрасли

На внешний вид каменноугольный кокс представляет россыпи различных фракций темно-серого (или даже черного) цвета. Это твердый пористый продукт. Плотность кокса разделяется на истинную и кажущуюся. Первая составляет 1.80-1.95 г/см3, вторая – приблизительно единица.

Однако эта величина может меняться в зависимости от условий получения, сырья (шихты), других технологических тонкостей. Так, при высоком содержании газовых углей прочность конечного продукта уменьшается. Но при этом наблюдается более легкая воспламеняемость материала.

Если понимать, как делают кокс из угля, то совсем нетрудно увеличить прочность, иногда заменяемую понятием истирание. Это достигается созданием условий для более длительного процесса коксования, что выполняется в основном за счет снижения температуры. Если в первом случае коксование идет при Т 1050 градусов, то во втором – около 950.

Видео: Как делается кокс на ОАО «Кокс» (Кемеровский коксохимический завод)

Уже было отмечено, где используется кокс, но есть потребность немного повторится:

  1. Плавка чугуна, где требуется высококачественное (с низкой долей серы) бездымное сырье.
  2. Материал для восстановления железной руды.
  3. Обогащение шихты.
  4. Литейное производство, как ваграночное топливо, используемое для эксплуатации специальных печей.

Все виды представляют кокс металлургический, но между первым и четвертым пунктами огромная пропасть по типу сырьевой базы. Суть отличий понятна в большей степени специалистам.

Для выплавки чугуна используют кокс доменный. К которому предъявляется ряд специфических требований. Часть из них регламентируется ГОСТ 5.1261-72 (с внесенными изменениями в 1974 году).

Выплавка чугуна

Туда входят такие параметры:

  • зольность и серность (средние и предельные значения);
  • выход летучих веществ;
  • два вида показателя прочности М25 и М10;
  • допустимый процент присутствия кусков менее 25 мм (максимум 3%);
  • средний размер фракции 25-40 мм, но не более 80.

В свою очередь кокс литейный считается более пригодным продуктом для металлургии. Размер фракций варьируется в диапазоне 60-80 мм. Желающий кокс литейный купить могут согласовывать потребности предприятия с ГОСТ 3340-88, по которому регламентируется изготовление этого вида сырья. В нем описываются все те же параметры, что и для доменной разновидности. При этом есть только один показатель прочности М40, который на самом деле имеет промежуточное значение между М10 и М25.

Кокс литейный и цена на него интересует предприятия, занимающиеся производством:

  • стали;
  • ферросплавов;
  • машиностроением;
  • в других отраслях тяжелой промышленности.

Если сравнивать показатели перечисленных параметров, нетрудно убедиться в том, что литейный кокс в металлургии ценится за следующее:

  • меньшее содержание серы (не более 1%);
  • слабое выделение легкоиспаряющихся веществ;
  • низкая электрическая проводимость;
  • высокая реакционная способность;
  • повышенная калорийность.

Но следует отметить, что для производства ферросплавов используют мелкие фракции, размером от 10 до 25 мм. Это не подходит под описание чисто литейного продукта, однако качественное содержимое – да. Поэтому в этой отрасли используют так называемые отходы (побочный продукт).

Схема загрузки кокса и шихты в доменную печь при производстве чугуна

Техническая осуществимость и технологические требования

На данный момент в Китае существует более десяти коксохимических предприятий, уже начавших применять технологию добавления коксовой пыли, что подтверждает ее техническую осуществимость.

Коксовая пыль в процессе коксования сама по себе является инертным веществом. Из-за высокой пористости и большой удельной площади поверхности коксовая пыль имеет большую площадь контакта с жидким материалом активных частиц, связь между которыми обуславливается адсорбцией твердых частиц в жидкой фазе. С одной стороны, коксовая пыль уменьшает усадку полукокса и количества выхода летучих материалов на этапе затвердевания, снижая усадку материала на двух этапах. С другой стороны, из-за своей пористой структуры, она позволяет уменьшить напряжение, возникающее при сжатии коксового пирога и снизить пористость кокса. Оба этих свойства повышают индексы М40 и М25 комковатости и прочности кокса на 1-2%. Поэтому раньше коксовая пыль часто использовалась как усиливающее и отощающее вещество.

Средние требования к технологии смешения угля с коксовой пылью: крупность коксовой пыли не должна превышать 0.5 мм, лучше всего, если частицы крупностью менее 0.2 мм будут занимать 80%. Отношение добавляемого продукта обычно выбирается исходя из расчетов менее3% на всю массу угля.

Применение данной технологии не сказывается негативно на термической стойкости кокса. С одной стороны, количество добавляемой пыли не велико, с другой стороны, коксовая пыль может выполнять роль усиливающего компонента и снижать растрескивание материала. Поэтому данная технология не только никак не влияет на термическую стойкость кокса, но даже немного ее улучшает, а также в полной мере удовлетворяет требованиям термической стойкости промышленных доменных печей.

Необходимо внимательно следить и контролировать крупность и соотношение добавляемого коксовой пыли. При изменении основных свойств смешиваемых углей необходимо внести соответствующие изменения в пропорции добавляемой коксовой пыли.

Экологичность технологии

Утечка коксовой пыли в процессе ее производства может привести к серьезному загрязнению окружающей среды. Поэтому герметичная изоляция производственного цикла и отсутствие пылеудаляющих устройств является одновременно экологичным и экономически выгодным решением.

Мельница серии BTM обеспечивает полную герметическую изоляцию в местах соединений отверстий питания и разгрузки с конвейерным оборудованием, предотвращая утечку пыли.

Данная технология требует установки пылеудаляющих устройств только в конце сушилки. Так как крупность частиц обрабатываемого материала в этом месте довольно большая, удаление пыли в этих местах не вызывает затруднений. Из-за небольших габаритных размеров мельницы BTM становится возможным установка звукоизолирующих стен или других звукоизолирующих сооружений.

В мельнице BTM вода для охлаждения используется в замкнутом цикле. Таким образом не происходит загрязнения окружающей среды и не расточаются водные запасы.

Влияние на экологию

На всех стадиях производства происходит выделение вредных веществ (аммиак, сероводород, угарный газ, бензол, синильная кислота). Это наносит вред не только экологии, но и здоровью человека (влияет на нормальную работу печени, системы кроветворения, органов дыхания и пр.). Кроме того, действие токсических веществ может усиливаться (эффект суммации).

Причем распределение токсических веществ «по окрестностям завода» с течением времени происходит неравномерно: в одном месте показатели могут продемонстрировать небольшие отклонения от нормативов, а в другом – значительные.

Для того чтобы улучшить экологическую ситуацию в регионах расположения коксохимических предприятий, нужно продолжать совершенствовать технологические процессы: стараться довести их до малоотходного или безотходного производства. Но это потребует значительных финансовых инвестиций. Поэтому для начала необходимо хотя бы вывести из использования устаревшие агрегаты и оборудование (а таких на заводах большинство) и заменить их на более новые аппараты, оснащенные современными природоохранными установками.

Сырье и виды кокса

Основной продукт – искусственное твердое топливо (кокс). Получается он в процессе нагрева природного горючего (древесина, каменный уголь, нефтепродукты) до высоких температур. В зависимости от состава и качества исходного материала, а также от техники его обработки можно получить несколько видов продукта:

  • Нефтяной (низкозольный – до 0,8%). Его получают путем пиролиза (термическое разложение без доступа кислорода) и крекинга (высокотемпературная переработка) жидких отходов нефтепроизводства.
  • Электродный пековый (зольность до 0,3%) – результат коксования каменноугольного пека при высоких температурах.
  • Каменноугольный – самый распространенный – выделяют доменный, литейный, бытовой и прочие виды.

По качеству наилучшим считается доменный кокс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector