Разница между пластичностью и ковкостью
Содержание:
- Химические явления. Химическая реакция.
- Сплавы, их классификация и свойства
- Кристаллические и аморфные вещества
- Химические свойства металлов
- Разница между пластичностью и ковкостью
- Влияние температуры на свойства
- Теплофизические свойства
- Маркировка меди
- Ковкость металлов
- Иные сферы применения
- История
- Основные виды сплавов
- Технологические характеристики
- Где находят медь в природе?
Химические явления. Химическая реакция.
Если при физических явлениях вещества, как правило, лишь изменяют агрегатное состояние, то при химических явлениях происходит превращение одних веществ в другие вещества. Приведем несколько простых примеров: горение спички сопровождается обугливанием древесины и выделением газообразных веществ, то есть, происходит необратимое превращение древесины в другие вещества. Другой пример: со временем бронзовые скульптуры покрываются налетом зеленого цвета. Дело в том, что в состав бронзы входит медь. Этот металл медленно взаимодействует с кислородом, углекислым газом и влагой воздуха, в результате на поверхности скульптуры образуются новые вещества зеленого цвета Химические явления – явления превращений одних веществ в другие Процесс взаимодействия веществ с образованием новых веществ называют химической реакцией. Химические реакции происходят повсеместно вокруг нас. Химические реакции происходят и в нас самих. В нашем организме непрерывно происходят превращения множества веществ, вещества реагируют друг с другом, образуя продукты реакции. Таким образом, в химической реакции всегда есть реагирующие вещества, и вещества, образовавшиеся в результате реакции.
- Химическая реакция – процесс взаимодействия веществ, в результате которого образуются новые вещества с новыми свойствами
- Реагенты – вещества, вступающие в химическую реакцию
- Продукты – вещества, образовавшиеся в результате химической реакции
Химическая реакция изображается в общем виде схемой реакции РЕАГЕНТЫ -> ПРОДУКТЫ
- реагенты – исходные вещества, взятые для проведения реакции;
- продукты – новые вещества, образовавшиеся в результате протекания реакции.
Любые химические явления (реакции) сопровождаются определенными признаками, при помощи которых химические явления можно отличить от физических. К таким признакам можно отнести изменение окраски веществ, выделение газа, образование осадка, выделение тепла, излучение света.
Многие химические реакции сопровождаются выделением энергии в виде тепла и света. Как правило, такими явлениями сопровождаются реакции горения. В реакциях горения на воздухе вещества реагируют с кислородом, содержащимся в воздухе. Так, например, металл магний вспыхивает и горит на воздухе ярким слепящим пламенем. Именно поэтому вспышку магния использовали при создании фотографий в первой половине ХХ века. В некоторых случаях возможно выделение энергии в виде света, но без выделения тепла. Один из видов тихоокеанского планктона способен испускать ярко-голубой свет, хорошо заметный в темноте. Выделение энергии в виде света – результат химической реакции, которая протекает в организмах данного вида планктона.
Итог статьи:
- Существуют две большие группы веществ: вещества природного и искусственного происхождения
- В обычных условиях вещества могут находиться в трех агрегатных состояниях
- Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими
- Кристаллы – твердые тела, имеющие форму правильных многогранников
- Аморфные вещества – вещества, не имеющие кристаллического строение
- Химические явления – явления превращений одних веществ в другие
- Реагенты – вещества, вступающие в химическую реакцию
- Продукты – вещества, образующиеся в результате химической реакции
- Химические реакции могут сопровождаться выделением газа, осадка, тепла, света; изменением окраски веществ
- Горение – сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе химической реакции, сопровождающийся интенсивным выделением тепла и света (пламени)
Сплавы, их классификация и свойства
Существует несколько способов классификации сплавов:
- по способу изготовления (литые и порошковые сплавы);
- по способу получения изделия (литейные, деформируемые и порошковые сплавы);
- по составу (гомогенные и гетерогенные сплавы);
- по характеру металла – основы (черные –основа Fe, цветные – основа цветные металлы и сплавы редких металлов – основа радиоактивные элементы);
- по числу компонентов (двойные, тройные и т.д.);
- по характерным свойствам (тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие и др.);
- по назначению (конструкционные, инструментальные и специальные).
Кристаллические и аморфные вещества
При описании физических свойств твердых веществ принято описывать структуру вещества. Если рассмотреть образец поваренной соли под увеличительным стеклом, можно заметить, что соль состоит из множества мельчайших кристаллов. В соляных месторождениях можно встретить и весьма крупные кристаллы. Кристаллы – твердые тела, имеющие форму правильных многогранников Кристаллы могут иметь различную форму и размер. Кристаллы некоторых веществ, таких как поваренная соль – хрупкие, их легко разрушить. Существуют кристаллы довольно твердые. Например, одним из самых твердых минералов считается алмаз. Если рассматривать кристаллы поваренной соли под микроскопом, можно заметить, что все они имеют похожее строение. Если же рассмотреть, например, частицы стекла, то все они будут иметь различное строение – такие вещества называют аморфными. К аморфным веществам относят стекло, крахмал, янтарь, пчелиный воск. Аморфные вещества – вещества, не имеющие кристаллического строения
Химические свойства металлов
Таблица Менделеева на треть состоит из рассматриваемых в данной статье моноэлементов. С практической точки для обывателя, да и специалиста, эти аспекты определяют их взаимодействие с окружающими агрессивными средами, такими как реагенты из воздушной массы, влажность, перепады температурных показателей, как суточных, так и годовых.
В этом ракурсе металлопозиции утрировано разделяются на следующие группы:
- Активные. В качестве примеров можно привести литий, калий, барий, кальций, натрий.
- Среднеактивные – магний, алюминий, марганец, цинк, хром, железо, никель, серебро.
- Малоактивные. Речь идет о меди, золотых слитках, платине и иных инертных компонентах.
Соединение с простыми веществами
Самым популярным в мире соединением, которое формируется между двумя одинаковыми элементами – это, безусловно, оксид. Ярким примером, который считается весьма распространенным и не очень приятным с практической точки зрения, считается окись железа – ржавчина (каждый из нас сталкивался с коррозионными процессами):
2FE + O2 = 2FEO.
Важно знать, что благородные металлоэлементы, такие как серебро, золото и платина, оксиды в обычных условиях не образуют. Это и является одной из основных причин их высокой стоимости
О взаимодействии с галогенами (фтором, хлором и другими позициями, которые присутствуют в окружающей среде) также не стоит забывать. Вариант: образование солей:
2Na + Cl2 = 2 NaCl.
Реакции со сложными соединениями
Здесь в первую очередь необходимо отметить взаимодействие щелочей с водой. Такие реакции всегда сопровождаются выделение водорода, что на практике чревато формированием взрывоопасной среды.
Среднеактивные также могут реагировать с H2O. Однако происходит это при достаточно высоких температурах, поэтому в обычных условиях повышения концентрации водорода не стоит.
Разница между пластичностью и ковкостью
Определение
Пластичность:Пластичность относится к способности материала растягиваться при растягивающем напряжении.
Ковкость: Податливость относится к способности деформироваться и изменять форму при сжимающем напряжении.
форма
Пластичность:Пластичные материалы можно свернуть в проволоку.
Ковкость:Ковкие материалы можно свернуть в листы.
измерение
Пластичность:Пластичность измеряется с помощью теста на изгиб.
Ковкость:Гибкость измеряется способностью противостоять давлению.
Факторы, влияющие на ковкость и пластичность
Пластичность:На пластичность влияет размер зерна.
Ковкость:Податливость зависит от кристаллической структуры.
Заключение
Под пластичностью понимается способность материала растягиваться при растягивающем напряжении, а податливость — это способность деформироваться и изменять форму при сжимающем напряжении. Это основное различие между пластичностью и пластичностью.
Оба эти свойства увеличиваются с повышением температуры, однако свинец и олово демонстрируют снижение пластичности и пластичности при нагревании. Большинство пластичных материалов податливы. Золото является одновременно очень пластичным и податливым. Поэтому очень популярен в изготовлении украшений.
Сплавы показывают сопротивление давлению, поскольку размер зерна становится более работоспособным благодаря смеси металлов. Пластичность зависит от размера зерна материала, в то время как пластичность зависит от кристаллической структуры.
Ссылка:1. «Податливость». Infoplease. Н.п., н.д. Web. 15 февраля 2017 г.2. «Ковкость в металлах». Физический стек обмена. Н.п., н.д. Web. 15 февраля 2017 г.3. Труитт, Бенджамин. «Сжимающий стресс: определение, формула и максимум». Study.com. Н.п., н.д. Web. 15 февраля 2017 г.4. Белл, Теренс. «Объясняемая гибкость | Компрессионный стресс и металлы ». Баланс. Н.п., н.д. Web. 15 февраля 2017 г.5. «Как изменяется пластичность металла при уменьшении зерна?» Physics Forums — Fusion of Science and Community. Н.п., н.д. Web. 15 февраля 2017 г.
Изображение предоставлено:1. «Эмалированная лицевая медная проволока» By Alisdojo — Собственная работа (CC0) через
Влияние температуры на свойства
Влияние температуры неоднозначно. Малоуглеродистые и среднеуглеродистые стали, с повышением температуры, становятся более пластичными (1). Высоколегированные стали имеют большую пластичность в холодном состоянии (2). Для шарикоподшипниковых сталей пластичность практически не зависит от температуры (3) . Отдельные сплавы могут иметь интервал повышенной пластичности (4). Техническое железо в интервале 800…1000С характеризуется понижением пластических свойств (5). При температурах, близких к температуре плавления пластичность резко снижается из-за возможного перегрева и пережога.
Теплофизические свойства
Как упомянуто выше, такие свойства описывают последствия воздействий тепла или холода на вещества и материалы.
Теплопроводностью называется способность объекта передавать тепло от поверхности к поверхности через свою толщу.
Теплоемкость – свойство вещества, предусматривающее поглощение определенного количества тепла при нагревании и выделение того же количества тепла при охлаждении.
Огнестойкостью называется физическое свойство материала, которое описывает его способность противостоять действию высокой температуры и жидкости при пожаре. В соответствии с уровнем огнестойкости материалы и вещества могут быть несгораемыми, трудносгораемыми и сгораемыми.
Огнеупорность – это способность объекта выдерживать длительные воздействия высокими температурами без последующего расплавления и деформации. В зависимости от уровня огнеупорности вещества могут быть огнеупорными, тугоплавкими и легкоплавкими.
Паро- и газопроницаемостью называется физическое свойство материалов пропускать через себя под давлением воздушные газы либо водяной пар.
Маркировка меди
Какие марки меди использует человек для производства необходимых ему изделий? Их множество: М00, М0, М1, М2, М3. Вообще, марки меди идентифицируются чистотой её содержания.
Например, медь марок М1р, М2р и М3р содержит 0,04% фосфора и 0,01% кислорода, а марок М1, М2 и М3 — 0,05-0,08% кислорода. В марке М0б кислород отсутствует, а в МО его процентное содержание составляет 0,02%.
Итак, рассмотрим более подробно медь. Таблица, приведённая далее, предоставит более точную информацию:
Марка меди |
М00 |
М0 |
М0б |
М1 |
М1р |
М2 |
М2р |
М3 |
М3р |
М4 |
Процентное меди |
99,99 |
99,95 |
99,97 |
99,90 |
99,70 |
99,70 |
99,50 |
99,50 |
99,50 |
99,00 |
Ковкость металлов
Ковкость – свойство металла изменять свою форму под действием ударов или давления, не разрушаясь. Степень ковкости зависит от многих параметров. Наиболее существенным из них является пластичность, характеризующая способность материала деформироваться без разрушения. Чем выше пластичность материала, тем большую степень суммарного обжатия он выдерживает.
В условиях обработки металлов давлением на пластичность влияют многие факторы: состав и структура деформируемого металла, характер напряженного состояния при деформации, неравномерность деформации, скорость деформации, температура деформации и др. Изменяя те или иные факторы, можно изменять пластичность.
Состав и структура металла. Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности.
Пластичность зависит от структурного состояния металла, особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.
Характер напряженного состояния. Один и тот же материал проявляет различную пластичность при изменении схемы напряженного состояния. Еще в 1912 году немецкий ученый Карман осаживал образцы из мрамора и песчаника, помещенные в толстостенный цилиндр, в который нагнетался глицерин под давлением до 170 МН/м2. Деформация происходила при схеме всестороннего сжатия. В результате остаточная деформация образцов составила 9 %, в дальнейшем удалось достигнуть деформации в 78 %. Схема всестороннего сжатия является наиболее благоприятной для проявления пластических свойств, так как при этом затрудняется межзеренная деформация и вся деформация протекает за счет внутризеренной. Появление в схеме растягивающих напряжений снижает пластичность. Самая низкая пластичность наблюдается при схеме всестороннего растяжения.
Неравномерность деформации. Чем больше неравномерность деформации, тем ниже пластичность. Неравномерность деформации вызывает появление дополнительных напряжений. Растягивающие напряжения всегда снижают пластичность и способствуют хрупкому разрушению. Кроме того, неравномерность напряженного состояния понижает механическую прочность материала, так как напряжения от внешней нагрузки суммируется с остаточными растягивающими напряжениями, то разрушение наступает при меньшей нагрузке.
Скорость деформации. С повышением скорости деформации в условиях горячей деформации пластичность снижается. Имеющаяся неравномерность деформации вызывает дополнительные напряжения, которые снимаются только в том случае, если скорость разупрочняющих процессов не меньше скорости деформации.
Иные сферы применения
А вы знаете, что медь очень часто употребляют как катализатор полимеризации ацетилена? Благодаря этому свойству медные трубопроводы, используемые для перемещения ацетилена, разрешено применять лишь тогда, когда содержание меди в них не превышает 64%.
Люди научились использовать ковкость меди и в архитектуре. Фасады и кровли, изготовленные из тончайшей листовой меди, служат безаварийно по 150 лет. Данный феномен объясняется просто: в медных листах происходит автозатухание процесса коррозии. В России используют медный лист для фасадов и кровель в соответствии с нормами Федерального Свода правил СП 31-116-2006.
В недалёком будущем люди планируют использовать медь в качестве бактерицидных поверхностей в клиниках для препятствования перемещению бактерий в помещениях. Все поверхности, к которым притрагивается рука человека, – двери, ручки, перила, водозапорная арматура, столешницы, кровати – специалисты будут изготавливать лишь из этого удивительного металла.
История
Одним из первых металлов, которые люди начали активно использовать в своём хозяйстве, является медь. Действительно, она слишком доступна для получения из руды и имеет малую температуру плавления. С давних пор человеческому роду известна семёрка металлов, в которую также входит и медь. В природе данный элемент встречается намного чаще, чем серебро, золото или железо. Древние предметы из меди, шлак, являются свидетельством её выплавки из руд. Они обнаружены при раскопках посёлка Чатал-Хююк. Известно, что в медный век получили большое распространение медные вещи. Во всемирной истории он следует за каменным.
С. А. Семёнов с сотрудниками проводил экспериментальные исследования, в которых выяснил, что медные орудия труда по сравнению с каменными выигрывают по многим параметрам. У них выше скорость строгания, сверления, рубки и распилки древесины. А обработка кости медным ножом длится столько же, сколько и каменным. А ведь медь считается мягким металлом.
Очень часто в древности вместо меди использовали её сплав с оловом – бронзу. Она необходима была для изготовления оружия и иных вещей. Итак, на смену медному веку пришёл бронзовый. Бронзу впервые получили на Ближнем Востоке за 3000 лет до н. э.: людям нравилась прочность и отличная ковкость меди. Из получаемой бронзы выходили великолепные орудия труда и охоты, посуда, украшения. Все эти предметы находят в археологических раскопках. Далее бронзовый век сменился железным.
Как получить медь можно было в древности? Первоначально её добывали не из сульфидной, а из малахитовой руды. Ведь в этом случае заниматься предварительным обжигом не было необходимости. Для этого смесь угля и руды помещали в глиняную посудину. Сосуд устанавливали в неглубокую яму и смесь поджигали. Далее начинал выделяться угарный газ, который способствовал восстановлению малахита до свободной меди.
Известно, что на Кипре уже в третьем тысячелетии до нашей эры были построены медные рудники, на которых и осуществлялась её выплавка.
На землях России и соседних государств медные рудники возникли за два тысячелетия до н. э. Их развалины находят и на Урале, и на Украине, и в Закавказье, и на Алтае, и в далёкой Сибири.
Промышленное плавление меди было освоено в тринадцатом веке. А в пятнадцатом в Москве был создан Пушечный двор. Именно там из бронзы отливали орудия различных калибров. Неимоверное количество меди уходило на изготовление колоколов. В 1586 году из бронзы была отлита Царь-пушка, в 1735 году – Царь-колокол, в 1782 году был создан Медный всадник. В 752 году мастера изготовили великолепную статую Большого Будды в храме Тодай-дзи. Вообще, список произведений литейного искусства можно продолжать бесконечно.
В восемнадцатом веке человек открыл электричество. Именно тогда огромные объёмы меди начали уходить на изготовление проводов и подобных им изделий. В двадцатом веке провода научились делать из алюминия, но медь в электротехнике всё ещё имела большое значение.
Основные виды сплавов
Человечество знакомо с различными металлическими сплавами. Самыми многочисленными из них являются соединения на основе железа. К ним относятся ферриты, стали и чугун. Ферриты имеют магнитные свойства, в чугуне содержится более 2,4% углерода, а сталь — это материал с высокой прочность и твердостью.
Отдельное внимания требуют металлические сплавы из цветных металлов.
Производство стали
Цинковые сплавы
Соединения металлов, которые плавятся при низких температурах. Смеси на основе цинка устойчивы к воздействию коррозийных процессов. Легко обрабатываются.
Алюминиевые сплавы
Популярность алюминий и сплавы на его основе получили во второй половине 20 века. Этот материал обладает такими преимуществами:
- Устойчивость к низким температурам.
- Электропроводность.
- Малый вес заготовок в сравнении с другими металлами.
- Износоустойчивость.
Однако нельзя забывать про то, что алюминий плавится при низких температурах. При температуре около 200 градусов характеристики ухудшаются.
Чтобы увеличить прочность детали, алюминий смешивают с медью. Чтобы заготовка выдерживала давление — с марганцем. Кремний добавляют, чтобы получить обычную отливку.
Медные сплавы
Сплавы на основе меди — марки латуни. Из этого материала изготавливаются детали высокой точности, так как латунь легко обрабатывать. В составе сплава может содержаться до 45% цинка.
Технологические характеристики
При оценке целесообразности выбора того или иного металла для решения конкретных практических, производственных задач, необходимо учитывать:
- Ковкость. Под давлением производится обработка изделий. При этом полного разрушения не наблюдается, однако структура кристаллической решетки изменяется. В результате могут меняться механические, физические и даже химические факторы изделий.
- Свариваемость. Возможность формирования сварных соединений с применением стандартных технологий.
- Усадка – определяется соответствующим коэффициентом. При нагреве любой объект расширяется, после охлаждения – уменьшается. Так вот соотношение и определяет данное свойство. Кстати, далеко не всегда малое усадочное значение являет собой благо. К примеру, ртутные термометры работают именно за счет предельно большого коэффициента расширения.
- Податливость режущим инструментам. С технологической точки зрения производственную ценность имеет только тот компонент, который можно сравнительно просто обработать или изготовить этот самый технический инструментарий.
Рассматриваемые направления характеризуют поведение уже готовых производственных изделий, товаров в процессе эксплуатации.
Где находят медь в природе?
Земная кора вмещает (4,7-5,5) х 10-3% меди (по массе). В речной и морской воде её намного меньше: 10-7% и 3 х 10-7% (по массе) соответственно.
В природе очень часто находят соединения меди. В промышленности используется халькопирит CuFeS2, именуемый медным колчеданом, борнит Cu5FeS4, халькозин Cu2S. Одновременно люди находят и иные минералы меди: куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2 и ковеллин CuS. Очень часто масса отдельных скоплений меди достигает 400 тонн. Медные сульфиды образуются в основном в гидротермальных среднетемпературных жилах. Нередко и в осадочных породах можно отыскать медные месторождения – сланцы и медистые песчаники. Наиболее известными месторождениями являются в Забайкальском крае Удокан, Жезказган в Казахстане, Мансфельд в Германии и медоносный пояс Центральной Африки. Другие богатейшие месторождения меди расположены в Чили (Кольяуси и Эскондида) и США (Моренси).
Большую часть медной руды добывают открытым способом. В ней содержится от 0,3 до 1,0% меди.