Особенности и технология лазерной сварки

Технология лазерной сварки

Сварка сталей

Качество сварки и надёжность сварных соединений, выполняемых лазером, сильно
зависят от качества сборки деталей под сварку. Требуемая точность сборки обеспечивается
мех. обработкой сварных кромок на металлорежущих станках.

Поверхность свариваемых кромок необходимо очистить от загрязнений и от влаги,
чтобы исключить образование дефектов
в сварном шве, и в
зоне термического влияния. В частности, пористости и оксидных соединений,
а также образования холодных трещин при сварке из-за переизбытка водорода. При
этом необходимо зачищать не только сварные кромки, но и близлежащие к ним участки
на 10-15мм выше и ниже сварных кромок.

Зазор между сварными кромками и перекос должны быть сведены к минимуму. Рекомендуемая
величина зазора — не более 5-7% от свариваемой толщины. Прихватки при сборке
не рекомендуются, но, в случае крайней необходимости они должны выполняться
лазером. Предпочтительное соединение для сварки стыковое. Нахлёсточные и замковые
соединения не рекомендуются из-за повышенной чувствительности к концентраторам
напряжений.

Сварку следует вести в среде аргона с углекислым газом, в соотношении 3:1,
или в среде гелия с аргоном в соотношении 2:1. В некоторых случаях, при
сварке низкоуглеродистых сталей допустима сварка без газовой защиты. Наиболее
характерные режимы лазерной сварки сталей представлены в таблице:

Указанные в таблице режимы рекомендуются для
сварки стыковых соединений, но их можно применять и для
сварки угловых швов, тавровых и других видов соединений.

Сварка алюминиевых и магниевых сплавов

Сварка
алюминия, магния и их сплавов усложняется тем, что это активные металлы,
и они хорошо взаимодействуют с окружающей средой и испаряющимися легирующими
элементами сплавов. Кроме этого, трудности представляет оксидная плёнка, которой
покрыты поверхности сварных кромок. Но, эти трудности могут быть устранены использованием
концентрированной подачи энергии в виде лазерного или электронного луча.

Подготовка сварных кромок происходит также тщательно, как и для дуговой сварки
и она включает в себя мех. обработку с травлением, промывкой в горячей воде
и зачисткой шабером непосредственно перед самим процессом сварки, чтобы на сварных
участках не успели образоваться оксидные плёнки.

Сварку проводят в среде защитных газов. В качестве защитных газов применяют
гелий, либо аргон. Оптимальные режимы лазерной сварки алюминиевых сплавов представлены
в таблице ниже:

Сварные швы при сварке магния и его сплавов, образованные лазерным лучом, хорошо
формируются и не провисают при сварке на весу. Это позволяет процесс сварки
вести без применения специальных подкладок, в отличии от дуговой сварки, что
значительно упрощает технологию изготовления изделий. Наиболее актуально это
в случае изготовления крупногабаритных конструкций. Оптимальные режимы сварки
некоторых материалов на основе магния представлены в таблице ниже:

Механические свойства сварных соединений алюминия и магния, выполненных лазерным
лучом, не уступают механическим свойствам основного металла, при соблюдении
технологии сварки.

Сварка титана и титановых сплавов

При
сварке титана и титановых сплавов основными трудностями являются высокая
активность металла при высоких температурах, склонность к росту зерна при нагреве
свыше 300°C и склонность к образованию холодных трещин при сварке в случае повышения
содержания водорода в металле шва и зоны термического влияния.

Подготовка кромок ведётся механической обработкой, или дробеструйной, или пескоструйной
с последующим химическим травлением, осветлением и промывкой. Большое влияние
на качество шва оказывает газовая защита зоны сварки и остывающей поверхности
сварного шва и околошовной зоны. Для защиты в зоне воздействия лазерного луча
используют гелий высокой чистоты, а для защиты остывающих участков возможно
применение аргона повышенной чистоты.

Режимы сварки некоторых материалов на основе титана приведены в таблице:

Схема лазера своими руками

Первое, что необходимо сделать, – это разобрать DVD привод. Из привода нужно извлечь оптическую часть, отсоединив шлейфу. Затем вы увидите лазерный диод – его следует аккуратно достать из корпуса. Помните, что лазерный диод чрезвычайно чувствителен к перепаду температур, особенно к холоду. Пока вы не установите диод в будущий лазер, лучше всего выводы диода перемотать тонкой проволокой.

Чаще всего у лазерных диодов три вывода. Тот, что посередине, дает минус. А один из крайних – плюс. Вам следует взять две пальчиковые батарейки и подключить к извлеченному из корпуса диоду с помощью резистора в 5 Ом. Чтобы лазер засветился, нужно подключить минус батарейки к среднему выводу диода, а плюс – к одному из крайних. Теперь можно собрать схему лазерного излучателя. Кстати, питать лазер можно не только от батареек, но и от аккумулятора. Это уже дело каждого.

Чтобы ваш прибор при включении собирался в точку, можно использовать старую китайскую указку, заменив лазер из указки на собранный вами. Всю конструкцию можно аккуратно упаковать в корпус. Так она будет и выглядеть красивее, и храниться дольше. Корпусом может послужить ненужный стальной фонарь. Но также это может быть практически любая емкость. Мы выбираем фонарь не только потому, что он прочнее, но и потому, что в нем ваш лазер будет смотреться значительно презентабельнее.

Таким образом, вы сами убедились, что для сборки достаточно мощного лазера в домашних условиях не требуется ни глубоких познаний в науке, ни запредельно дорогого оборудования. Теперь вы можете собрать лазер сами и использовать его по назначению.

Аппараты

Оборудование представлено в виде крупногабаритных станков или мобильных устройств:

  • ЛАТ-С – станок, предназначенный для наплавки и сварки металлических изделий. Устройство показывает высокие технические характеристики, он оснащается координатными станками автоматического типа, что увеличивает скорость обработки сложных конструкций.
  • CLW120 – лазерный сварочный аппарат, который обладает ювелирной точностью. Используется для обработки черных и цветных сплавов, нержавейки и титана. Работает устройство от 220 В, поэтому подходит для бытового применения от электрического щитка.

С твердым активным элементом

Принцип работы заключается в следующих аспектах:

  • Твердый элемент в форме стержня – это источник луча, он находится в специальной камере.
  • Лампочка накачки генерирует вспышки света, которые активируют рабочее тело.

Схема твердотельного лазера

Твердотельная часть производится из рубина, этот материал показал высокие технические характеристики, безопасность и безупречную эффективность.

С элементами на основе газовой среды

Это высокопроизводительные станки, которые работают в сочетании с газовой защитой. Активной средой выступает смесь азота, кислорода, гелия, она поступает под высоким давлением, достигающим более 10 кПа. Возбуждение рабочих газов происходит за счет электрического разряда. КПД устройства не превышает 15%.

Азот и гелий передают энергию углекислому газу, что создает идеальные условия для получения разряда.

Классификация газовых лазеров

По методу охлаждения установки разделяются на две большие группы: с конвективной (интенсивной) и диффузной (замедленной) прокачкой. Последняя используется в однолучевых лазерах с малой мощностью. Конвективную целесообразно монтировать в мощные устройства.

По стороне движения газов относительно электродов зеркал резонатора и газовой камеры, конвективные лазеры разделяются на поперечную и продольную прокачку. Возбуждение смеси осуществляется разрядом высокочастотного или постоянного тока. За охлаждение резонатора и оптических элементов отвечает двухконтурная охладительная система, рабочая смесь остывает теплообменником по типу вода-газ.

Системы транспортировки и фокусировки луча

Эта система включает в себя защитные лучепроводы, зеркало и фокусирующий элемент. Зеркало предназначено для изменения траектории луча и перемещает в рабочую зону. Твердотельные лазеры малой мощности оборудованы специальными призмами и преломляющими зеркалами, которые состоят из многослойного диэлектрического покрытия. Газовые лазеры обладают зеркалами из меди, более мощные устройства используют зеркала с водяной системой охлаждения.

Фокусирующий элемент (тубус) совершает движения относительно обрабатываемой детали. В нем закрепляется линза. Твердотельные лазеры оснащены стеклянными оптическими линзами, для газовых используют призмы из селенида цинка либо хлорида калия. Воздушные шторки защищают линзы от продуктов плавления.

Фокусное расстояние для получения высокой мощности должно составлять около 100-150 мм. уменьшение этого показателя приводит к трудности с отводом вредных продуктов.

При лазерной сварке твердосплавного металла расстояние от источника энергии до рабочей зоны определяется табличным методом.

Газовая защита

Цель системы газовой защиты заключается в уменьшении вероятности окисления в области сварного шва и зоны вокруг него. Она включает в себя сопла разных конструкций. Эти элементы устраняют брызги и пары, которые появляются при сварке. Сопло выбирается в зависимости от уровня химической активности материалов, мощности, глубины плавления. В рабочую зону подается газ, наиболее подходящий по составу.

Перемещение луча и изделия

Свариваемые изделия и энергетический луч перемещаются посредством манипулятора с ЧПУ, который имеет несколько степеней свободы, этот показатель зависит от сложности процесса. Скорость движения может достигать 400 м/ч.

При обработке габаритных деталей с большой массой целесообразнее перемещать луч, а не деталь. Этот процесс реализуется посредством передвижных зеркал. Самой перспективной системой является закрепление инструмента в автоматическом манипуляторе.

Гибридные установки

Гибридная дуговая сварка отлично подходит для создания прямых сварочных швов. Главным преимуществом таких установок является полное сплавление всевозможных профилей без специальной подготовки.

Особенность метода заключается в комбинации электрической дуги с энергетическим лучом. Он используется для скрепления деталей большой толщины на повышенной скорости в режиме автомат и низком теплообмене. Качество швов получается на высоком уровне.

Усиление самодельной установки

Для усиления мощности и плотности луча, который и является главным режущим элементом, следует приготовить:

  • 2 «кондера» на 100 пФ и мФ;
  • Сопротивление на 2-5 Ом;
  • 3 аккумуляторные батарейки;
  • Коллиматор.

Ту установку, которую вы уже собрали можно усилить, чтобы в быту получить достаточно мощности для любых работ с металлом. При работе над усилением помните, что включить напрямую в розетку ваш резак будет для него самоубийством, поэтому следует позаботиться о том, чтобы ток сперва попадал на конденсаторы, после чего отдавался батарейкам.

При помощи добавления резисторов вы можете повысить мощность вашей установки. Чтобы еще больше увеличить КПД вашего устройства, используйте коллиматор, который монтируется для скапливания луча. Продается такая модель в любом магазине для электрика, а стоимость колеблется от 200 до 600 рублей, поэтому купить ее не сложно.

Дальше схема сборки выполняется так же, как было рассмотрено выше, только следует вокруг диода накрутить алюминиевую проволоку, чтобы убрать статичность. После этого вам предстоит измерить силу тока, для чего берется мультиметр. Оба конца прибора подключаются на оставшийся диод и измеряются. В зависимости от нужд вы можете урегулировать показатели от 300 мА до 500 мА.

После того, как калибровка тока выполнена, можно переходить к эстетическому декорированию вашего резака. Для корпуса вполне сойдет старый стальной фонарик на светодиодах. Он компактный и умещается в кармане. Чтобы линза не пачкалась, обязательно обзаведитесь чехлом.

Лазерно-дуговая технология

Гибридная технология совмещает в себе преимущества дуговой и лазерной сварки. Когда нужно сваривать толстые листы металла с большой скоростью и минимальным подводом тепла к сварочной зоне в автоматическом режиме, то для этого потребуется оборудование с лазерно-дуговой сваркой.

За счет быстрого разогрева лазером сварочной ванны улучшается качество шва, его глубина. Это уменьшает напряжения и деформации от возникновения соединительного шва.

Кроме этого приводит к большой скорости сварки, появляется возможность провести сваривание в один проход. Нет жестких требований к соединяемым кромкам. В комбинации с дуговой сваркой обычно используется твердотельный лазер.

Дуговая точечная

Общий принцип данной технологии точечной ювелирной сварки такой же, как и у обычного электродугового процесса. Источником энергии для плавления свариваемого металла служит электрическая дуга, зажигаемая между тугоплавким электродом и изделием.

Тем не менее, имеются существенные отличия дуговых аппаратов для ювелирной сварки от их более мощных промышленных собратьев. Главное различие заключается в режиме сварочного процесса.

Работа большого промышленного сварочного аппарата характеризуется достаточно длительным режимом горения электрической дуги (это относится к работе как с плавящимся, так и с тугоплавким, вольфрамовым или угольным электродом).

Ювелирную точечную электрическую сварку отличает импульсный характер работы. Сварочная дуга в данном случае представляет собой короткий электрический разряд, который, не смотря на это, успевает расплавить металл в зоне сварки и образовать сварное соединение в небольшой области (точке). По этой причине данная разновидность сварки называется точечной.

Конструкция аппарата для ювелирной сварки имеет еще более существенные отличия. Источником напряжения для создания дуги в нем служит накопительный конденсатор, который разряжается во время сварочного импульса.

Оборудование

Аппараты, предназначенные для сварочных работ, могут иметь различные характеристики выполняемых ими операций и внешние параметры. Лазерная сварочная установка бывает исполнена в формате мини или занимает довольно большое пространство. Каждый аппарат имеет в своём составе основные компоненты:

  • генератор лазера;
  • устройство для передачи лазерного излучения;
  • блок сварочной головки, снабжённый линзой фокусирования;
  • блок, отвечающий за фокусирование лазерного луча;
  • зеркальная система, выполняющая роль резонатора;
  • система, приводящая в движение саму заготовку и лазерную сварочную головку;
  • программный блок управления аппаратом;
  • блок электропитания;
  • устройство охлаждения;

В настоящее время существует три типа лазерного оборудования для выполнения сварки.

Твердотельное

Это самая серьёзная аппаратура, которая работает в диапазоне мощности от нескольких десятков до нескольких тысяч ватт. Суть технологии этого сварочного устройства заключается в следующем:

  • в качестве источника лазерного излучения используется стержень прозрачного вида, сделанный из натурального рубина либо иттриевого граната, который для прочности легируют неодимовым компонентом;
  • твёрдый стержень заключён в специальном блоке;
  • вспышка специальной лампы генерирует излучение, которое передаётся стержневому элементу.

Газовое

Данный тип сварочного лазерного оборудования считается наиболее высокопроизводительным. Установка выполняет сварочные работы под защитой газов. Мощность таких аппаратов колеблется от десятков до тысяч киловатт. Принцип работы устройства состоит в следующем:

  • в качестве излучателя лазерного пучка применяется трубка из прозрачного материала, которая содержит внутри себя газовую смесь, состоящую из гелия, азота, кислорода с углекислотой;
  • газовая смесь находится в трубке под давлением, и при подаче электрического импульса в виде разряда излучатель приходит в активное состояние;
  • под действием электрического разряда, исходящего одновременно от нескольких электродов, гелий и азот сообщают свою энергию углекислому газу, и в результате получается лазерный импульс;
  • лазерный импульс с помощью отражения в множественных зеркалах многократно усиливается и через оптическую систему выходит в область своего применения при сварке.

Гибридное

Этот тип лазерной сварки основан на применении сочетания электрической дуги и мощного луча энергии. Дуговая методика применяется с целью выполнения ровных швов. Достоинством подобных лазерных аппаратов считается хорошее соединение любых материалов без предварительного цикла подготовительных работ. Энергетический луч в сочетании с электрической дугой может выполнять в автоматическом режиме на больших скоростях сварку толстостенных заготовок, проявляя при этом низкий уровень теплообмена. Готовый сварочный шов при такой процедуре отличается точностью и надёжностью.

Достоинства и недостатки

Как и любой метод, лазерный процесс сварки имеет как свои положительные, так и отрицательные стороны.

Преимуществами лазерной сварки являются:

  • способность к соединению любых материалов – стекла, металла, пластика, керамики, драгоценных металлов и так далее;
  • высочайшая точность при выполнении работ;
  • обеспечивается минимальная толщина сварочного шва при его максимальной прочности;
  • зона рабочей поверхности возле формирующегося шва не нагревается, поэтому детали в процессе сварки не подвергаются деформированию;
  • в процессе работы отсутствует рентгеновское излучение, не образуются вредные побочные продукты плавления материалов;
  • для выполнения работы по сварке металлов не нужно применять флюс, присадку, сварочные электроды;
  • процесс сварки можно осуществлять в любых, даже труднодоступных участках заготовки, а также на значительном удалении детали от самого лазера;
  • сварку заготовок можно выполнять даже в том случае, если они размещаются за прозрачной преградой;
  • сварочный аппарат можно быстро перепрограммировать и после окончания одного вида работ начать выполнение других задач.

Недостатки метода сварки с использованием лазера в основном связаны с финансовой составляющей и заключаются они в следующем:

  • стоимость оборудования, комплектующих деталей и запасных частей у лазерного аппарата довольно высокая;
  • коэффициент полезного действия процесса сварки напрямую зависит от отражающих характеристик материала заготовки;
  • для работы с лазерной сварочной установкой требуются специалисты с высоким уровнем образования и подготовки;
  • помещение, где работает лазерная сварочная установка, должно быть чистым (без запылённости), с нормальным уровнем влажности воздуха и не подвергаться колебаниям вибрационного характера.

Типы лазеров

При сваривании металлов применяют лазеры двух типов:

  • твердотельные;
  • газовые.

Тот или иной тип лазера подбирается в зависимости от цели использования оборудования.

Твердотельный

В данном случае активным телом выступает рубиновый стержень со стеклом и примесью неодима или же алюмо-иттриевого граната, который легирован неодимом или иттербием. Стержень располагается в осветительной камере. Чтобы возбудить атомы активного тела, применяют лампу накачки, которая создает мощные световые вспышки.

На торцах активного тела находятся два зеркала:

  • частично прозрачное;
  • отражающее.

Лазерный луч будет выходить сквозь частично прозрачное зеркало, заранее оно многократно отражается в рубиновом стержне и усиливается. Твердотельные лазеры не слишком мощны, их мощность составляет от 1 до 6 кВт.

С помощью данных лазеров свариваются только мелкие и не толстые детали, чаще всего — это объекты микроэлектроники, например, тонкие проволочные выводы с диаметром 0,01−0,1 мм на основе нихрома, золота или тантала. Допускается и точечная сварка изделий на основе фольги с диаметром точки порядка 0,5−0,9 мм. Таким же способом выполняется герметичный катодный шов на кинескопах современных телевизоров.

Катод — это трубка с длиной в 2 мм, диаметром 1,8 мм и толщиной стенки 0,04 мм. К такой трубке приваривают дно толщиной в 0,12 мм на основе хромоникелевого сплава. Такие мелкие изделия варят благодаря высокой степени фокусировки луча, а также точной дозировке энергии посредством регулирования длительности импульса в определенных рамках.

Газовый

Газовые лазеры — более мощные, активным телом в них выступает газовая смесь. Газ прокачивается из баллонов с помощью насоса посредством газоразрядной трубы. Энергетическое возбуждение газа происходит за счет электрического разряда между электродами. По торцам газоразрядной трубы находятся зеркала. Электроды подключают к источнику питания, а сам лазер охлаждается с помощью водяной системы.

Основной минус оборудования с продольной прокачкой газа — это его габариты. А вот лазеры с поперечной прокачкой газа более компактные. Общая мощность может составлять от 20 кВт и больше, благодаря чему можно соединять металлы с толщиной до 20 мм на большой скорости — порядка 60 м/ч.

Самые мощные конструкции — газодинамические. В них для работы применяют газы, которые нагреваются до температуры от 1000 до 3000 К. Газ в них быстро истекает через сопло Лавля, в итоге происходит адиабатическое расширение, а затем газ охлаждается в зоне резонатора. При охлаждении возбужденные молекулы переходят на более низкий энергетический уровень, при этом испускается когерентное излучение. Накачка может происходить с применением другого лазера или прочих мощных энергетических источников. Мощные конструкции позволяют сваривать на скорости около 200 м/ч стали толщиной в 35 мм.

Сварка с помощью лазера осуществляется в атмосферных условиях, вакуум создавать не нужно, нужно при этом защищать от воздуха расплавленный металл. Обычно используются газы, например, аргон. Процесс характеризуется тем, что из-за высокой тепловой мощности луча на поверхности свариваемого изделия металл интенсивно испаряется. Пары ионизируются, вследствие чего луч рассеивается и экранизируется.

Поэтому в условиях применения высокомощного оборудования в зону сварки, кроме защитного газа, также подают и плазмоподавляющий газ. Им обычно выступает гелий, который намного легче аргона и не будет рассеивать луч. Чтобы упростить процесс нужно, использовать специальные газовые смеси, обладающие плазмоподавляющей и защитной функцией. В таком случае горелка должна подавать газ так, чтобы он мог сдувать ионизированный пар.

Во время работы луч медленно углубляется в деталь и оттесняет жидкий металл сварочной ванны на заднюю стенку кратера. Это обеспечивает «кинжальное» проплавление при условии большой глубины и малой ширине шва.

Большая концентрация энергии в луче позволяет достичь высокой скорости работы, а также обеспечивает хороший термический цикл и высокую прочность металла шва.

https://youtube.com/watch?v=u1GKNo9wa1w

Условия и методы проведения процесса

Для достижения высокой мощности луча необходима его фокусировка. Она проводится в ходе серии последовательных отражений от переднего и заднего полусферических зеркал. Когда интенсивность пучка превышает пороговое значение, он проходит через центр переднего зеркала и далее, через систему направляющих призм, к рабочей зоне.

Лазерная сварка металлов может проводиться при различном взаиморасположении соединяемых заготовок. Глубину проплавления металла в рабочей зоне можно регулировать в широком диапазоне — от поверхностного до сквозного. Работу также можно вести непрерывным лучом или прерывистыми импульсами.

Различают следующие виды процесса:

  • В стык. Проводится без присадочных материалов и флюсовых порошков в защитной газовой атмосфере.
  • Внахлест. Свариваемые кромки накладываются одна на другую. Требуется обеспечить прижим заготовок друг к другу.

Лазерная сварка в стык

Компактные аппараты бытового класса позволяют проводить лазерную сварку своими руками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector