Литейные алюминиевые сплавы

Химический состав

Стандарт Mn Cr Si Fe Cu Al B Ti Zn Zr Mg Be
ОСТ 1 90026-80 ≤0.1 ≤0.05 ≤0.1 ≤0.15 2-2.6 Остаток 8-9 0.1-0.2 2.3-3
TУ 1-804-106-2012 ≤0.1 ≤0.05 ≤0.2 ≤0.3 2-2.6 Остаток ≤0.005 ≤0.05 8-9 0.1-0.2 2.3-3 ≤0.002
ОСТ 1 90048-90 ≤0.1 ≤0.05 ≤0.3 ≤0.4 2-2.6 Остаток ≤0.03 8-9 0.1-0.2 2.3-3
TУ 1-804-088-2012 ≤0.1 ≤0.05 ≤0.2 ≤0.3 2-2.6 Остаток ≤0.03 8-9 0.1-0.2 2.3-3 ≤0.002

Al — основа.
По ОСТ 1 90026-80 химический состав приведен для сплава повышенной чистоты В96Цпч (1960пч). Суммарное содержание прочих примесей ≤ 0,10 %. Содержание каждой в отдельности прочей примеси ≤ 0,050 %.
По ОСТ 1 90048-90 химический состав приведен для сплава В96Ц (1960). Массовая доля каждой прочей (не регламентированной) примеси ≤ 0,05 %, суммарная массовая доля прочих примесей ≤ 0,10 %.
По ТУ 1-804-106-2012 химический состав приведен для сплава В96Ц (1960). Суммарная массовая доля прочих примесей ≤ 0,10 %. Содержание бериллия и бора не определяется, а гарантируется расчетом.
По ТУ 1-804-088-2012 химический состав приведен для сплава В96Ц (1960). Суммарная массовая доля прочих примесей ≤ 0,10 %. Содержание бериллия не определяется, а гарантируется расчетом.

Материал велосипедных рам

Сплав АД33Т1 , закаленный и искусственно состаренный, аналог сплава 6061Т6, который часто используют для изготовления труб и профилей различного сечения. Т1 и Т6 — обозначения режима термообработки. Повышенная пластичность этого сплава позволяет изготавливать трубы сложного профиля и переменной толщины стенки. Пластичность, возможность термоупрочнения, коррозионная стойкость и хорошая свариваемость делают сплав АД33 (или 6061) отличным материалом для изготовления велосипедных рам. Другой сплав 7005 или по ГОСТ—4784-97 сплав , применяемый для изготовления рам, выигрывает по прочности, проигрывая в пластических свойствах при деформации, и требует большей точности режима сварки и последущей термообработки. 7000-я группа сплавов склонна к коррозионому растрескиванию под напряжением, что вынуждает более тщательно защищать раму от коррозии.

Основные методы литья цинка

В цветной металлургии применяют несколько технологий получения отливок, и это несколько затрудняет работу технолога в части определения того, каким образом будет изготовлена деталь. Перед тем как сделать окончательный выбор в пользу той или иной технологии необходимо понять следующее:

Метод центробежного литья

  1. Выбранный метод отливки должен гарантировать то, что полученные детали будут полностью отвечать требованиям нормативно-технической и рабочей документации. Все, параметры, заложенные в деталь будут соблюдены, а припуски на механическую обработку не должны превышать норм, определенных в соответствующих стандартах.
  2. Техпроцесс должен обладать соответствующей производительностью и экономичностью.
  3. Использование избранного процесса, должно основываться на эксплуатации существующего оборудования и оснастки.

Метод литья цинка в песчаные формы

Для получения отливок из цинковых сплавов используют следующие основные разновидности литья, при этом надо учитывать их особенности. Например, литье в песчаные или металлические формы – это самый распространенный и, наверное, экономичный вид получения необходимых заготовок. Но необходимо учитывать то, что после литья в песок потребуется проведение дополнительной обработки поверхности, так как ее качество оставляет желать лучшего.В условиях производства небольших партий деталей имеет смысл подумать о литье в кокиль. Но в этом случае препятствием может стать высокая стоимость оснастки.

Центробежное литье

Результатом постоянного совершенствования литейных технологий стало появление машин для выполнения центробежного литья. Принцип этого способа получения отливок прост – расплав подается в формы, вращающиеся вокруг своей оси, под воздействием центробежной силы его «размазывает» по форме и через заранее определенное время будет сформирована готовое изделие. Такая технология позволяет выплавлять изделия без пузырьков воздуха.

Существуют машины горизонтального и вертикального действия. Их применяют для получения отливок с большими размерами. Использование оборудования такого класса оправдано с точки зрения экономики при организации массового производства.

Эта технология позволяет получать пустотелые отливки, при этом нет необходимости в использовании дополнительных приспособлений, например, стержней. Отливка, полученная по такой технологии, имеет плотную и мелкозернистую структуру материала.Вместе с тем оборудование для выполнения работ по этой технологии стоит довольно дорого. Кроме того, в силу ряда причин, в частности, из-за малой податливости формы, возможно, появление дефектов в виде трещин.

Литье под давлением

Литье под давлением цинковых сплавов основано на следующем принципе – расплав подается в форму под воздействием давления от 7 до 700 МПа.

Его уровень зависит от состава сплава и характеристик будущей детали. На существующем оборудовании, возможно, изготовление деталей весом от нескольких грамм до десятков килограмм.Достоинства и недостатки технологии литьяИз множества литьевых технологий для работы с цинковым сплавами применяют следующие

Литье в кокиль

Гарантирует получение заготовок с высоким качеством поверхности, как правило, такие детали не нуждаются в операциях по механической обработке. Но, кокиль, обладает высокой ценой ввиду высокой трудоемкости его получения.

Высокая скорость охлаждения приводит к тому, что снижается текучесть расплава и это может привести к появлению разного рода дефектов. Практическое отсутствие газопроницаемости формы приводит к тому, что газы, образующиеся в процессе литья, остаются в заготовке.Литье цинковых сплавов под давлением позволяет получать сложные изделия с минимизированными размерами стенок. Качество получаемой продукции позволяет избежать дальнейшей мехобработки. Такое литье отличает уровень производительности.Вместе с тем для его обеспечения требуется дорогое оснащение. Кроме этого, существуют ограничения на габаритные размеры отливаемых деталей.

Виды литейных алюминиевых сплавов

Все литейные сплавы алюминия можно условно разделить на несколько основных групп:

  1. Высокопрочные и жаропрочные сплавы. Наиболее распространенным материалом из этой группы можно назвать алюминиевый сплав АЛ19. Его легируют путем добавления титана, за счет чего придаются более высокие механические свойства. Добавление легирующих элементов может проводится при низких или комнатных температурах. Жаропрочность определяет то, что механические свойства и линейные размеры остаются неизменными даже при нагреве состава до температуры 350 градусов Цельсия. Сплавы этой группы хорошо свариваются, а также обладают высокой обрабатываемостью. Стоит учитывать, что за счет легирования коррозионная стойкость относительно невысокая. Существенно повысить прочность можно путем закалки или старения. Подобные марки литейных алюминиевых сплавов широко используются при литье крупногабаритных отливок по песчаной форме.
  2. Конструкционные герметичные алюминиевый сплав обладают более высокими литейными свойствами. Распространенные марки: АЛ4 и АЛ9. Также следует отметить достаточно высокую коррозионную стойкость. Стоит учитывать тот момент, что термическая обработка в этом случае не проводится. При закалке или старении эксплуатационные качества не улучшаются. Хороший комплекс технологических свойств определяет популярность алюминиевого сплава.
  3. Коррозионностойкие металлы. К данной группе относится маркировка АЛ27 и АЛ8. Следует учитывать, что подобный тип металла обладает высокой стойкостью к воздействию повышенной влажности. Высокая коррозионная стойкость во многих агрессивных средствах существенно расширяет область применения металла. Кроме этого, структура определяет хорошую свариваемость и обрабатываемость резанием. Однако отметим, что металл обладает низкой жаропрочностью – структура не может выдержать воздействие температуры выше 80 градусов Цельсия. За счет легирования снижаются и литейные свойства. Исключением можно назвать сплав АЛ24, основные свойства которого сохраняются при температуре до 150 градусов Цельсия.

Последняя группа сплавов получила достаточно широкое распространение при изготовлении корпусов и деталей, на которые оказывается воздействие морской воды. Из-за высокой концентрации соли на поверхности довольно часто образуется коррозия.

К литейным сплавам принято относить составы, в которых есть от 10 до 13% кремния. Довольно часто в состав добавляются магний, медь и другие присадки, способные существенно повысить прочность. Также в состав добавляют титан и цирконий. В свою очередь, марганец может существенно повысить антикоррозионные свойства.

Рассматривая маркировку отметим, что для этого применяется обозначение от АЛ2 до АЛ20. Эти материалы сегодня еще называют силуминами. Их химический состав, от которого зависят механические качества, может существенно отличаться. Именно поэтому следует подробно рассматривать состав каждой марки.

Оборудование для литья под давлением

Центральным узлом любого оборудования, предназначенного для литья пластика под давлением, является пресс-форма, от качества которой довольно сильно зависит качество готовой продукции. Кроме пресс-форм требуются также средства подготовки и подачи сырья, подогрева и поддержания температуры, подачи расплава в пресс-форму, постепенного охлаждения пресс-формы, заполненной под давлением исходным материалом, а также средства механизации и автоматизации процесса, облегчающие работу, увеличивающие ее производительность и повышающие качество готовой продукции. В зависимости от конкретных условий, указанный комплект может быть полным, включающим в себя все перечисленное и даже более, или неполным, ограничивающимся пресс-формой и минимумом навесного оборудования.

Надо сказать, соответствующее оборудование (машины для литья под давлением) изготавливается в современном мире самое различное, поэтому познакомиться со всем его многообразием нет никакой возможности. Но, как пример, мы можем рассмотреть чуть подробнее саму процедуру литья под давлением. Упрощенно сам принцип этой технологии выглядит примерно так:

Рисунок: слева – исходный пласт-порошок поступает в цилиндр, справа — процесс прессования.

Порошок полимера (например, полиэтилена) подается через приемный бункер литьевого аппарата в цилиндр, в котором под воздействием подогрева расплавляется. После этого цилиндр примыкает своим соплом к собранной форме, а плунжер от воздействия подаваемого на него давления перемещает расплавленный материал влево (см.рис.), заполняя им полость формы. В итоге объем формы заполняется расплавленным полимером, после чего плунжер убирается в крайнюю правую позицию (см.рис). После этого расплаву дается возможность остыть, тем самым образовав готовое твердое изделие. После достаточного остывания форма разделяется, и из нее вынимается готовое изделие. Далее весь цикл начинается заново.

Таким образом, в данном технологическом процессе можно условно выделить такие фазы:

  1. дозируется исходный материал и далее отмеренная доза загружается в рабочий цилиндр;
  2. плавление исходного материала;
  3. подача (как правило, путем впрыска) расплавленного исходного пластика в сцепленную форму;
  4. выдерживание пластика в форме под давлением в течение необходимого времени;
  5. охлаждение достигшего заданной формы изделия во всем объеме;
  6. разделение формы с удалением из нее уже готового изделия.

Температуру пластикации материала необходимо поддерживать на уровне, превышающем температуру текучести пластика на 10 – 20°С. Если поднять значение температуры еще выше, то уменьшится вязкость расплава, а значит, облегчатся условия формовки изделия, повысится производительность процесса, однако одновременно с этим резко увеличивается и скорость старения пластика, что недопустимо.

Рабочую температуру формы следует держать несколько ниже температуры размягчения пластика, однако слишком заниженное ее значение может стать существенной преградой для нормального заполнения формы во время впрыска расплавленного пластика. Ввиду противоречивости требований выбрать оптимальное значение температуры проще всего экспериментально. Время изготовления готового изделия определяется суммой времен подачи порошка, его плавления, впрыскивания расплавленного материала внутрь полости формы, выдержки заготовки под необходимым давлением, охлаждения.

Выдержка изделия под давлением должна заканчиваться, как только застынет расплав во впускных каналах формы. Требуемая продолжительность времени зависит от свойств конкретного пластика, от температуры расплавленного пластика, от температуры формы, от свойств литниковой системы. Длительность охлаждения зависит от степени нагрева материала и формы, объемом изделия. Именно это время (длительность охлаждения) вносит самый большой вклад в общую длительность цикла.

Наибольшая доля отходов при литье под низким давлением – это пластик, застывший в литниках. Однако все отходы литья, осуществляемого по данной технологии, могут быть использованы повторно.

Примеров подобного оборудования в Интернете можно найти множество в силу распространенности как полиэтилена, так и технологий его получения и применения, например, видео процесса литья под давлением вы можете увидеть ниже.

https://youtube.com/watch?v=iaDOjuoOZxI

Влияние легирующих добавок

Металлы в составе композиций улучшают и изменяют физические и химические свойства основного металла. Основной упор делается на повышении механических характеристик. Алюминий улучшает общую структуру, литейные свойства, повышает прочность. Цинк также повышает прочность и способствует уменьшению зерен в отливке. Основная цель введения марганца, кроме увеличения прочности – повышение химической стойкости к воздействию агрессивных сред и снижение вредного влияния примеси железа.

Добавка циркония уменьшает растворимость водорода в расплаве, которая в чистом составе составляет значительную величину. Связывая водород, цирконий также способствует уменьшению пористости и зернистости отливок.

Введение лития в некоторые составы позволяет получить магниевые сплавы с рекордно малой плотностью – в 2 раза меньшей, чем у алюминия, с сохранением высокой прочности и легкости механической обработки. Данные сплавы наиболее широко используются в аэрокосмической промышленности, где снижение общего веса конструкции увеличивает массу полезной нагрузки.

Внешний вид сплавов магния

Некоторые металлы, напротив, нежелательны даже в малых количествах. Так, примеси железа или никеля даже в объеме тысячных долей процента резко снижают коррозионную стойкость сплава. Растворенный водород увеличивает пористость материала, вызывает увеличение зерен, снижая, таким образом, прочность изделия.

Характеристики и применение

Марка В95 обозначает алюминиевый деформируемый сплав повышенной прочности, который относится к системе Al-Zn-Cu-Mg (дюраль или дюралюминий). Буква «В» обозначает дюраль повышенной прочности, а цифра 95 указывает на процентную чистоту сплава. Химический состав материала согласно ГОСТ 4784-97: Al (алюминий) 86,3-91,5%, Mg (магний) 1,8-2,8%, Fe (железо) до 0,5%, Si (кремний) до 0,5%, Mn (марганец) 0,2-0,6%, Cu (медь) 1,4-2%, Ti (титан) до 0,05%, Zn (цинк) 5-7%, Cr (хром) 0,1-0,25%, Ni (никель) до 0,1%. Отбор и подготовку проб для определения химического состава цветных металлов и сплавов осуществляют по ГОСТ 24231-80.

Физические свойства сплава В95 при температуре 20°С:

  • модуль упругости первого рода 0,74·10-5 МПа;
  • плотность 2850 кг/м³;
  • удельное электросопротивление 54·109 Ом·м.

Дюраль марки В95 отличается максимальной прочностью по сравнению с другими алюминиевыми сплавами, высокой твердостью и вязкостью разрушения. У него средний уровень антикоррозионной стойкости, механической обрабатываемости и свариваемости. Для повышения пластичности металла используется различные методы термической обработки. Дюраль, закаленный и искусственно состаренный на максимальную прочность, маркируется В95Т1. Благодаря методу плакирования устраняется проблема низкой коррозионной стойкости дюралей. Из данного сплава изготавливают высоконагруженные конструкции и детали для авиастроения.

Зарубежные аналоги алюминиевого сплава В95:

  • США — 7075, A97075, AA7075;
  • Германия — 3.4365, AlZnMgCu1.5;
  • Япония — 7075;
  • Франция — 7075, A-Z5GU;
  • Англия — 7075, L95, L96;
  • Евросоюз — ENAW-7075, ENAW-AlZn5.5MgCu;
  • Италия — AiZn5.8MgCuCr, P-AlZn5.8MgCuCr;
  • Польша — AIZn6Mg2Cu;
  • Чехия — 424222;
  • Австрия — AIZn6Mg2Cu1.5, AlZnMgCu1.5;
  • Швейцария — AlZnMgCu.

Цинковый сплав в бижутерии вреден ли

Своим внешним видом такие ювелирные изделия напоминают благородные металлы, поэтому широкое применение они нашли в ювелирной промышленности. Их часто применяют для изготовления бижутерии. Украшения, сделанные из цинковых сплавов, смотрятся достаточно дорого, при этом, благодаря легкости обработки, просты в изготовлении.

Наиболее часто в производстве бижутерии используется латунь или томпак (золотистая латунь), он меньше подвержен воздействию коррозии, поэтому используется в процессе изготовления более дорогих украшений. Украшения из сплава меди и цинка с добавлением алюминия внешне очень похожи на серебряные.

Цинковый сплав ржавеет или нет

Для предотвращения возникновения ржавчины бижутерию с содержанием цинка обрабатывают специальным защитным составом, и такие украшения могут прослужить достаточно долго.

Темнеет или нет

Правда цинк, взаимодействуя с атмосферным кислородом и различными бытовыми жидкостями, включая воду, подвержен окислению даже при нормальных температурах, что способствует потемнению изделий из цинкового сплава. Такие украшения могут оставлять следы на одежде и коже, поэтому за ними нужен дополнительный уход.

Так же для предотвращения окисления на изделия из цинка некоторые производители гальваническим методом наносят напыление золота или серебра, но такая обработка значительно увеличивает стоимость украшений.

Месторождения цинка достаточно распространены на земле, и несмотря на его малое содержание в руде и сложность его очищения от примесей, получаемый из нее цинк и его сплавы с другими металлами находят все большее применение в различных отраслях промышленности.

Давайте разберемся подробнее, какие сплавы используются в бижутерии. При изготовлении используется целый ряд сплавов различных металлов с добавлениями тех или иных компонентов, все такие сплавы, как правило, обозначаются производителями как «ювелирный сплав»
. В современных ювелирных сплавах уже не используется никель — ведь именно его высокое содержание в сплаве, из которого изготовлено украшение, или покрытие из никеля вызывают аллергию. Рассмотрим же поподробнее, из чего именно сделаны прекрасные серьги, колье, браслеты, кольца, подвески, каффы
и другие чудесные украшения и бижутерия, которые вы можете купить в нашем магазине.

Вторая часть нашего рассказа о ювелирных сплавах, которые используются для изготовления ювелирных украшений и бижутерии, которые можно купить в нашем магазине, посвящена сплавам на основе цинка. Чаще всего производители указывают в качестве материала «цинковый сплав». Один из самых распространенных сплавов подобного рода — латунь. Это сочетание цинка и меди с добавлением других металлов и компонентов. Иногда в качестве отдельного ювелирного сплава выделяют такую разновидность латуни, как томпак — этот сплав очень пластичен и не подвержен коррозии, благодаря чему очень популярен для изготовления .

Также термином «цинковый сплав» производители украшений и бижутерии обозначают сочетание цинка, алюминия и меди
. Часто этот сплав своим внешним видом имитирует серебро, поэтому и находит такое широкое применение в изготовлении украшений и бижутерии, которые сочетают в себе прекрасный дизайн и доступную стоимость.

Бижутерный сплав
— макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов. Как правило это олово, никель, латунь, медь и др. металлы.

Названия

Название сплава пришло в Россию из Германии в первое десятилетие XX века (нем. Duraluminium) и в русском языке стало общим обозначением для целой группы сплавов на основе алюминия, легированного добавками меди, магния и марганца. Иногда встречаются также старая (основная до 1940‑х годов) форма «дуралюми́ний» и англизированный вариант «дюралюми́н». Название происходит от немецкого города Дюрен (нем. Düren), где в 1909 году было начато промышленное производство сплава.

Дюралюминий разработан немецким инженером-металлургом Альфредом Вильмом (Alfred Wilm), сотрудником металлургического завода «Dürener Metallwerke AG». В 1903 году Вильм установил, что сплав алюминия с добавкой 4 % меди после резкого охлаждения (температура закалки 500 °C), находясь при комнатной температуре в течение 4-5 суток, постепенно становится более твёрдым и прочным, не теряя при этом пластичности. В 1909 году Альфред Вильм подал заявку на патент «Способ улучшения сплавов алюминия, содержащих магний». Вскоре лицензии на способ были приобретены компанией «Dürener Metallwerken», которая вышла на рынок с продуктом под маркой «дуралюминий» (нем. duraluminium). Состав патентованного дюралюминия, выпускаемого на заводе «Dürener Metallwerken»: 3,5-5,5 % Cu; 0,5-0,8  % Mg; 0,6  % Mn.

На международной выставке дирижаблей, проходившей во Франкфурте в 1909 году, новый сплав получил третью премию. В 1910 году на выставке дирижаблей в Петербурге Вильм получил Большую серебряную медаль за лучший материал для дирижаблей, а также Большую золотую медаль за «достижения в области военной техники».

Обнаруженное Вильмом явление старения алюминиевых сплавов позволило повысить прочность дюралюминия до 350-370 МПа по сравнению с 70-80 МПа у чистого алюминия.

Распространённые в Европе сплавы марок «Hiduminium» и «Avional» являются близкими по составу к дюралюминию сплавами других фирм-производителей — High Duty Alloys Ltd. (Великобритания) и Aluminium-Industrie A-G. (Швейцария).

В СССР/России дюралюминами называют деформируемые сплавы системы Al-Cu-Mg, в которые дополнительно вводят марганец. Типичным дюралюмином является сплав Д1 (состав: 4,3 % Cu, 0,6 % Mg, 0,6 % Mn, остальное — Al), однако вследствие сравнительно низких механических свойств производство его заметно сокращается; сплав Д1 для листов и профилей заменяется сплавом Д16.

В США и Евросоюзе дюралюмины представлены, в первую очередь, сплавами , 2017 (во Франции ранее обозначался AU4G или duralumin) и 2117. По международной универсальной классификации группе деформируемых алюминиевых сплавов Al-Cu-Mg присваиваются обозначения от 2000 до 2999.

Состав сплавов, % массы
Сплав Si Fe Cu Mn Mg Cr Ni Zn Ti Zr+Ti Прочие

каждого

Прочие

сумма

Al
2017A мин. 0,20 3,50 0,40 0,40 основа
макс. 0,80 0,70 4,50 1,00 1,00 0,10 0,25 0,25 0,05 0,15
2024 мин. 3,80 0,30 1,20 основа
макс. 0,50 0,50 4,90 0,90 1,80 0,10 0,25 0,15 0,20 0,05 0,15
Физико-механические свойства
2017 2024
Массовая плотность (г/см³) 2,79 2,77
Интервал температур плавления 510-640 500-638
Линейный коэффициент термического расширения (10−6/K) 23,0 22,9
Модуль упругости МПа (1) 74 000 73 000
Коэффициент Пуассона 0,33 0,33
Теплопроводность (W/M°C) состояние T4: 134 состояние T3: 120
Удельная теплоёмкость (Дж/кг°C) 920 920
Предел упругости RP0.2 (МПа) 260 (2) 300 (3)
Предел прочности Rm (MPa) 390 (2) 440 (3)
Относительное удлинение (%) 9 (2) 9 (3)

(1) Среднее значение модулей при растяжении и сжатии
(2) Пруток, состояние Т4 (закалка и естественное старение) диаметром от 6 до 75 мм
(3) Пруток, состояние Т3 (закалка, деформация в холодном состоянии, старение) диаметром от 50 до 100 мм

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector