Стабилизатор тока на lm317 для светодиодов
Содержание:
Как проверить мультиметром
TL431 нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросхема. Сопротивления между его выводами у разных производителей отличаются. Поэтому, для того чтобы убедится в её исправности обычно собирают простейшие схемы проверки.
Для проверки в схеме изображенной на рисунке слева, на вход подается 12 В. Если устройство исправно, то на выходе должно появится напряжение 4.9-5.0 В, а при замыкании кнопки S1 – 2.5 В. Мультиметр, в данном случае, нужен для измерения результатов тестирования.
TL431 можно также проверить в другой тестовой схеме со светодиодом (рисунок справа). При изменении сопротивления R2 потенциометра, на управляющем электроде появится 2.5 В. Диод должен скачкообразно перейти в светящееся состояние. Это будет означать то, что устройство исправно. Данный принцип работы можно использовать для создания индикатора разряда аккумулятора.
Схемотехническое решение микросхемы LM317
Интегральная микросхема (ИМС) изготовлена в пластмассовом корпусе, с возможностью установки на теплоотводе (радиаторе). Она имеет три вывода и предоставляет возможность линейной стабилизации напряжения и тока. ИМС предназначена для применения в регулируемых блоках питания (БП) и светодиодных схемах.
К сведению. Популярная модель этого устройства изготовлена в корпусе ТО-220 и имеет букву T в составе маркировки. Эта буква указывает на вид корпуса.
Каждый из трёх выводов LM317 обладает следующим назначением:
- VIn – вход, куда подают напряжение, предназначенное для регулировки;
- VOut– это выход, с которого снимается нужное напряжение, он имеет электрический контакт с кронштейном для крепления к плате или радиатору;
- Adj – регулируемый вход, через который производят изменение выходного напряжения, используя для этого переменный резистор.
Считают выводы слева направо, держа микросхему лицевой стороной к себе.
Распиновка LM317 TO-220(T)
Собираем блок питания
После того как вы выбрали сборочную схему и обзавелись всеми нужными комплектующими, можно приступать в работе. Как уже говорилось, в нашем случае сборка блока питания регулируемого типа будет происходить на базе микросхемы lm317.
Сборка происходит следующим образом:
- устанавливаем выбранный тип трансформатора;
- затем приступаем к сборке выпрямительного блока или каскада. Здесь нужно спаять полупроводниковые диоды. В данной ситуации ничего сложного нет. Единственное, нужно учитывать тип выправления;
Схема выпрямительного каскада
далее определяем выводы на схеме. Здесь имеется три вывода: масса (1), вход (2) и выход (3). Переворачиваем корпус так, чтобы нумерация шла слева направо. Теперь осталось только провести стабилизацию напряжения. Минус с выпрямителя подаем на второй вывод, а с третьего снимаем стабилизированное напряжение.
Схема стабилизатора напряжения
Вариант готового БП
После этого ориентируемся по выбранной схеме, устанавливая оставшиеся детали.
Все элементы схемы можно поместить в корпус, для которого следует использовать пластик или лист алюминия. Но можно придать БП абсолютно любую форму, которую вы сами захотите.
Как видим, при правильно подобранной схеме, в зависимости от своего уровня профессионализма и знаний радиотехники, можно без особых проблем создать своими руками блок питания регулируемого типа на базе микросхемы lm317. Для того чтобы у вас все получилось, нужно следовать схеме сборки, а также приобрести качественные детали. В результате у вас получится отличный блок питания с отменными характеристиками – незаменимый помощник в домашней лаборатории любого радиолюбителя.
Как подобрать и установить датчики объема для автоматического управления светом
Блок питания
– это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов — LM317 и КТ819Г.
Схема регулируемого блока питания LM317
Список элементов схемы:
Цоколёвка микросхемы и транзистора
Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.
Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший — для хорошего охлаждения. Всё-таки 3 ампера — это немало!
Схемы и расчеты
Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.
Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I (1), где I – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I2×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.
Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.
Основные технические характеристики LM338
Контакты Мощный блок питания на напряжение В и ток 5AA и более LM, Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более в зависимости от количества микросхем. Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.
Подготовлено для сайта RadioStorage. Детали Транзистор BD нужно установить на небольшой радиатор.
Согласно описанию, микросхема LM работает при достаточно широком разбросе входного напряжения, этот диапазон может лежать в пределах от 3-х до 35 Вольт. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM
Дабы установить соответствие этих данных истине воспользуемся мультиметром. Я сначала мочил по привычке но это делать не обязательно. Он используется как датчик, который подключен между adj LM и землей.
Читайте дополнительно: Как подключить двойной выключатель эра 12
Вы можете скачать файл с нашего сервера, благодарность сайту приветствуется, особенно материальная. В качестве резисторов R3, R Уважаемый Пользователь! Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.
А то я руководствовался вот этими записями www. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.
Лично меня данная покупка удовлетворила полностью, жаль только, что некоторых деталей изначально не хватало… На этом, пожалуй, все. Так вот, в комплекте их четыре, а нужен только один… А вот диодов в комплекте два, хоть на плате разметка под три. Срезав одну из сторон можно заглянуть внутрь и посмотреть на содержимое посылки. Я специально на плату нанес текст очень мелким шрифтом. Цоколевка расположение выводов у микросхем LM
Смысл в ней в том что она тонкая и к ней нефига не прилипает. Можно сказать просто урезал. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Как собрать Простую Схему Блока Питания LM317 — СС#7
Стабилизация и защита схемы
Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.
Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.
Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.
Для облегчения расчета параметров стабилизатора существует специальный калькулятор:
Скачать калькулятор для LM317 (338,2 KiB, скачано: 6 182)
Скачать datasheet LM317 (216,6 KiB, скачано: 2 081)
Производители
Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.
Регулируемый блок питания на стабилизаторе напряжения LM317 |
Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду
Блок питания на микросхеме LM317T, схема:
В интернете встречается неисчислимое множество схем различных блоков питания. Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3 до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.
VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.
R1 – около 18 КОм (нужно подбирать под ток светодиода).R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма R2 + R3 = 5КОм.
R3 — 5,6 Ком.R4 – 240 Ом.C1 – 2200 мкФ (электролитический)
C2 — 0,1 мкФC3 — 10 мкФ (электролитический)C4 — 1 мкФ (электролитический)DA1 – LM317T
Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.
Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.
Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.
P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт http://bip-mip.com/
Дополнительные рекомендации по настройки схемы:
Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.
Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.