Виды цветных металлов. типы, классификация, способы определения вида цветных металлов

Обращение с радиоактивными отходами

Обращение с ядерными отходами имеет свои особенности. Связано это с тем, что такие отходы являются наиболее опасными для окружающей среды.

Чем опасны радиоактивные отходы

Недостаточно знать, что такое ядерные отходы

Важно также понимать, какую они представляют опасность для экологии и человека. А заключается она в следующем:

  • происходит загрязнение окружающей среды. В результате человек вдыхает ядовитые вещества, негативно воздействующие на организм. Почвы и водоемы становятся непригодными для использования;
  • в живых организмах под воздействием ядерных веществ могут происходить генные мутации, уродства;
  • токсичные вещества могут быть причиной неизлечимых заболеваний.

ФЗ 190 «Об обращении с РАО»

Регулирование обращения с радиоактивными (ядерными) отходами на территории РФ осуществляется на законодательном уровне. Основным документом является Федеральный закон 190-ФЗ «Об обращении с радиоактивными отходами и о внесении изменений в отдельные законодательные акты Российской Федерации». В данном законе отображаются следующие основные моменты:

  • все имеющиеся на территории России РАО считаются накопленными. Обращение осуществляется на средства налогоплательщиков;
  • предусматривается реализация окончательного захоронения данных отходов. При этом особо опасные вещества должны быть захоронены в наиболее глубоких геологических объектах;
  • завозить РАО на территорию страны не разрешается. Однако данный вопрос полностью не урегулирован. В связи с этим все же можно встретить бочки с токсическими веществами, которые было решено ввезти в определенные районы.

Принципы МАГАТЭ

Основными принципами международного агентства по атомной энергетике являются:

  • обращаться с ядерными отходами следует так, чтобы была возможность обеспечить оптимальный уровень защиты здоровья людей и защиты окружающей среды;
  • обращение должно регулироваться на законодательном уровне;
  • следует стремиться к минимизации образования радиоактивных отходов.

Стадии обращения с РАО

Оборот ядерных отходов проходит через несколько стадий:

  • Сбор, который производится в месте их образования.
  • Сортировка.
  • Кондиционирование. Этот процесс позволяет снизить опасность токсичных веществ и уменьшить их объем для более удобной транспортировки.
  • Раздельное хранение в специальных сооружениях, обеспечивающих максимальную безопасность и изоляцию от окружающей среды.
  • Транспортировка.
  • Захоронение в изолированных местах, исключающих излучение токсических элементов во внешнюю среду. Зачастую для этих целей создаются специальные могильники. Их расположение специалисты часто определяют с помощью географической карты.

Радиоактивные отходы являются самыми опасными для экологии и живых организмов

Поэтому обращаться с ними стоит крайне осторожно

Способы переработки радиоактивных отходов — как утилизируют РАО

Классификация особо опасных отходов и правила обращения с ними

Методы переработки промышленного мусора и твердых бытовых отходов

Порядок обращения с отходами производства и потребления

Виды отходов производства и методы переработки промышленного мусора

Классификация отходов 1-5 класса опасности — перечень и таблица

Рынок редкоземельных металлов

В настоящее время рынок редкоземельных металлов в упадке, и Китай планирует ограничить годовое производство до 140 000 метрических тонн, начиная с 2020 года, чтобы попытаться снова поднять цены.

Причины падения цен на редкоземельные металлы

Начнем с супермагнитов.

Неодим – редкоземельный элемент, примерно с концентрацией в земной коре, как свинец и хром, но сосредоточен в высокосортных рудах. В 1982 году Дженерал Моторс и японская компания Сумитомо обнаружили, что смешивание одной четвертой неодима по весу с тремя четвертями железа и бора может сделать самое мощное семейство супермагнетиков тогда известным, Nd2Fe14B и что свойства этих магнитов могут быть дополнительно улучшены путем добавления следов других редкоземельных металлов – празеодима плюс диспрозий или более дорогой тербий.

Китай, обладая большим количеством всех этих элементов и предпочитая добавленную стоимость экспорту сырья, создал индустрию супермагнитов, чьи низкие цены захватили большую часть мирового рынка и закрыли конкурентов. Китай также энергично проводит исследования и разработки, чтобы найти дальнейшее применение своей редкоземельной щедрости.

Даже в 2015 году, на долю Китая приходилось более 80% мирового редкоземельного производства, сейчас около 70 процентов – это неразумный баланс.

Технологические решения по уменьшению спроса

С 2010 года промышленники предупредили, что рынок редкоземельных металлов с монополией Китая на элементы супермагнитов могут сделать растущий глобальный переход на электрические автомобили и ветряные турбины невозможным – потому что их двигатели и генераторы якобы требовали супермагнитов и, следовательно, этих элементов. Некоторые такие сообщения были даже в 2017 году. Но это все подвергается сомнению. Все, что делают такие вращающиеся машины с постоянными магнитами, также может быть сделано или лучше двумя другими видами двигателей, которые не имеют магнитов.

Сейчас двигатели применяют современную управляющую программу и силовую электронику из кремния, самого распространенного твердого элемента на Земле.

Первый вид – это асинхронный двигатель, изобретенный Николой Теслой 130 лет назад и используемый в каждом электромобиле Приус и Тесла сегодня. Без магнитов изготавливают двигатели не только в электрических автомобилях, но также в ветротурбинах, что освобождает тонны неодима. То, что некоторые ветряные турбины и производители используют генераторы с постоянными магнитами, не означает, что другие должны их изготавливать также.

Точно также красные люминофоры в компактных люминесцентных лампах традиционно используют европий. Но эти лампы теперь в значительной степени вытеснены белыми светодиодами, которые используют примерно на 96 процентов меньше европия. Кроме того, новые красные люминофоры не используют редкоземельные металлы, в то время как последний зеленый люминофор сокращает использование тербия более чем на 90 процентов.

Эрбий в волоконно-оптических ретрансляторах – еще один редкоземельный элемент. Эрбий необходим чтобы увеличить емкость волокна. Ширина полосы частот сейчас увеличена путем передачи по мултиплексу и беспроволочными рационализаторствами.

Некоторые гибридные автомобили, такие как Honda Insight 2001 года, использовали никель-металл-гидридные батареи, содержащие лантан, но теперь они в значительной степени заменены более легкими литиевыми батареями, которые обычно не используют лантан. Кроме того, электромобилям с литиевыми батареями требуется в два—три раза меньше батарей по массогабаритным характеристикам.

Лидирующие на рынке литиевые батареи электромобиля в мире, как и их двигатели, вообще не используют редкие металлы. Количество электромобилей в мире растет.  Появляются новые технологии в виде мощных потенциальных заменителей батарей (в частности, графеновые суперконденсаторы).

Свойства редкоземельных металлов

Редкоземельные металлы имеют серебристый или желтый окрас. Они поддаются механической обработке и проводят электрический ток. Свойства РЗМ могут изменяться при переходе веществ из металлического состояния в парообразное. При высоком давлении и большой разнице в энергии атомные радиусы уменьшаются, что приводит к увеличению плотности простых веществ.

Физические свойства

Плотность РЗЭ составляет 6000–7000 кг/м3. Температура плавления вещества равняется 900 °С. Переход веществ в газообразное состояние осуществляется при температуре от 3500 °С. Наибольшим захватом тепловых нейтронов обладают гадолиний, самарий и европий. При нагревании до высоких температур элементы становятся пластичными и легко поддаются прокатке или ковке.

РЗМ обладают магнитными свойствами. Они относятся к классу парамагнетиков. Магнитная восприимчивость соединений зависит от их температуры. Гадолиний, Диспрозий и Гольмий располагают ферромагнитными свойствами. Они могут увеличить свое магнитное поле в несколько раз при нагреве до критических температур. В естественной среде большая часть редкоземельных металлов являются сверхпроводниками. Переход сверхпроводящее состояние осуществляется при охлаждении веществ до температуры -268,15 °С. Величина данного показателя зависит от избыточного давления.

Механические свойства

Механические свойства РЗЭ находятся в зависимости от количества примесей, содержащихся в веществе: кислорода, серы, азота и углерода. Ими обладают большинство представителей иттриевой и цериевой подгрупп. Чистые металлы, в которых содержится меньше 1% примесей, имеют твердость 500 Мпа. Этот показатель зависит от температуры химического соединения. При охлаждении вещества до 800 °С твердость элемента составляет 30 МПа. Если понизить температуру вещества до 550 °С, то оно полностью размягчится, что обусловлено полиморфным превращением.

При температурах 20-800 °С повышается пластичность редкоземельных металлов. Во время нагревания внутренняя структура элементов переходит на кубическую модификацию. Во время растяжения РЗМ полностью разрушаются при давлении в 150 Мпа. При более низких значениях этого показателя соединения деформируются. Удельное растяжения металлов составляет не менее 12%.

Химические свойства

При взаимодействии с молекулами кислорода РЗЭ покрываются тонкой оксидной пленкой, защищающей металлы от физических деформаций и воздействия иных химических элементов. При высокой влажности вещества начинаются окисляться с большей интенсивностью и превращаются в щелочи. Данный химический процесс осуществляется при температурах до 250 °С. При дальнейшем нагревании в кислородной среде металлы начнут окисляться с выделением большого количества тепловой энергии.

Наибольшей реакционной способностью располагают скандий и иттрий. При нагревании до 400 °С они вступают в реакции с водородом, образуя гидриды. Полученные вещества имеют высокую плотность и могут взаимодействовать с солями.  Церий обладает свойством пирофорности. При разрезании этого элемента на воздухе образуется множество искр. В этом случае выделяется до 220 ккал тепла.

Степень окисления редкоземельных соединений равняется +3. Поэтому эти способы образовывать тугоплавкие, твердые и крепкие оксиды. При взаимодействии с водой РЗМ образуют малорастворимые гидроксиды. Растворимость элементов зависит от ряда активности и свойств амфотерности. Из-за высокой активности металлов, соли редкоземельных соединений быстро растворяются в сильных кислотах, относящихся к минеральной группе химических веществ. При взаимодействии РЗМ с неметаллами VI – VII групп получаются галогены. РЗЭ могут вступать в реакцию с селеном, бромом, йодом при нагревании. Они инертны к большинству растворимых гидроксидов.

Выгодно ли инвестировать в драгоценные металлы?

Конечно, редчайшие металлы ценятся в разы больше, но покупать их профессиональные инвесторы не советуют. Для успешных инвестиций лучше выбирать наиболее распространенные и пользующиеся стабильным спросом металлы. Сейчас это палладий, платина, золото и серебро.

Чтобы понять, насколько выгодно инвестирование в эти металлы, достаточно рассмотреть таблицы изменения цен и прибыли, предоставляемые Центробанком. Золото | USD | 1 Унция

Лучшие результаты по стабильности показывает золото.

Например, в 2010 году один грамм этого металла принес инвесторам почти 125 рублей. Однако этот же металл оказался и самым нестабильным. Обвалы цен на него случаются крайне часто.

Палладий | USD | 1 Унция

Способы инвестиций

Здесь список возможностей достаточно широк, но все они имеют как свои плюсы, так и минусы:

  1. Покупка слитков. Самый простой способ инвестирования. Однако при продаже придется уплатить 18% НДС, а при продаже банку — еще и 13 % подоходного налога.
  2. Покупка монет. Коллекционные монеты — не самый лучший вид инвестиций. Причина: высокая стоимость и 18% НДС. Большую ценность они имеют для нумизматов, чем для профессиональных инвесторов.
  3. Акции компаний, добывающих драгоценные металлы. Могут принести большой и постоянный доход, но есть и некоторые неудобства: купить их можно только на фондовой бирже, и без услуг опытного брокера не обойтись.
  4. Ценные бумаги. Довольно новый, но интересный способ инвестирования. Купить бумаги можно на фондовой бирже. Каждая бумага обеспечена 3,1 г золотого запаса, хранящегося в лондонском HSBC. Единственный минус: при скромных вложениях обналичить бумаги настоящим золотом не получится.
  5. Счет в банке. Тут возможно два варианта: счет СОХ или ОМС. В плане получения дохода интересен именно второй вариант, обезличенный металлический счет. По принципу действия это ничто иное, как валютный депозит. Процент по вкладам небольшой, но в случае подорожания металла можно неплохо заработать на разнице цен. Налоги на золотые слитки, приобретенные в рамках ОМС, уплачиваются только в том случае, если владелец решит обналичить счет, получив металл на руки.

Использование и добыча

Использование редкоземельных металлов является узкоспециализированным, но разнообразным. Эти элементы использованы в мобильных телефонах, суперсильных магнитах и, следовательно, моторах и генераторах, некоторых катализаторах нефтеперерабатывающего предприятия, лазерах и в люминесцентной лампе или плоских экранах, некоторых батареях и в сверхпроводниках и других технологиях важных в современной жизни. Некоторые редкоземельные металлы особенно полезны в энергетических приложениях.

Ученые предупреждают, что нехватка редкоземельных металлов или почти монополия Китая на них, может подавить переход на возобновляемые источники энергии и другие чистые технологии.

В середине 1990-х годов Китай укрепил свой контроль над большей частью мирового рынка и добычу редкоземельных металлов в мире, а последний американский рудник и мельница, когда-то доминирующие в мире закрылись в 2002 году, потому что это было невыгодно. Китай начал вводить экспортные квоты в 2006 году и ограничил экспорт в Японию (основной потребитель для высокотехнологичных миниатюрных двигателей) поэтому мировые цены взлетели. Правительственные ведомства США опубликовали срочные сообщения о редкоземельном кризисе и его угрозе национальной безопасности.

Может ли контроль Китая над этими важнейшими элементами (примерно 97 процентов) блокировать способность Вашингтона производить ракеты Томагавк, самолеты F-35 и очки ночного видения, как предупреждали некоторые ученые, не говоря уже об электрических транспортных средствах и ветровых турбинах?

Неодим

Используется для создания мощных магнитов, используемых в громкоговорителях и жестких дисках компьютеров, чтобы они были меньше и эффективнее. Магниты, содержащие неодим, также используются в экологически чистых технологиях, таких как производство ветровых турбин и гибридных автомобилей.

Лантан

Этот элемент используется в камерах и объективах телескопа. Соединения, содержащие лантан, широко используются в приложениях для освещения углерода, таких как студийное освещение и проекция кино.

 Церий

Используется в каталитических нейтрализаторах в автомобилях, что позволяет им работать при высоких температурах и играет решающую роль в химических реакциях в конвертере. Лунтан и церий также используются в процессе переработки сырой нефти.

 Празеодим

Используется для создания крепких металлов для использования в авиационных двигателях. Празеодим также является компонентом особого сорта стекла, используемого для изготовления козырьков для защиты сварщиков и стеклоизготовителей.

 Гадолиний

Используется в рентгеновских и МРТ-системах сканирования, а также в телевизионных экранах. Исследования также проводятся в его возможное использование при разработке более эффективных холодильных систем.

Применяется в экранах телевизоров, компьютеров и в других устройствах, которые имеют визуальные дисплеи, поскольку используются для изготовления материалов, которые выделяют разные цвета. Европий также используется для изготовления контрольных стержней в ядерных реакторах.

Металлы, составляющие группу редкоземельных

По состоянию на 2019 г., в список редкоземельных металлов входят следующие химические элементы:

  1. Скандий: назван в честь Скандинавии.
  2. Иттрий: получил наименование в честь населенного пункта Иттербю, расположенного на территории современной Швеции.
  3. Лантан: в переводе с греческого языка наименование этого элемента означает «таинственный, скрытный».
  4. Церий: назван в честь римской богини Цереры и одноименной карликовой планеты в солнечной системе.
  5. Празеодим: в переводе с греческого языка наименование этого элемента обозначает «зеленый близнец».
  6. Прометий: назван в честь древнегреческого мифического персонажа Прометея.
  7. Неодим: в переводе с греческого языка означает «новый близнец».
  8. Самарий: получил наименование в честь минерала самарскит.
  9. Европий: назван в честь одноименной части света.
  10. Гадолиний: получил наименование в честь финского химика Юхана Гадолина.
  11. Диспрозий: в переводе с греческого языка наименование этого элемента означает «труднодоступный».
  12. Гольмий: назван в честь столицы Швеции – Стокгольма.
  13. Эрбий: получил наименование в честь шведской деревни Иттербю.
  14. Лютеций: назван в честь старинного названия столицы Франции, используемого древними римлянами.
  15. Иттербий: получил наименование в честь населенного пункта Иттербю.
  16. Тулий: получил наименование в честь сказочного острова Туле, описанного в скандинавской мифологии.
  17. Тербий: назван в честь деревни Иттербю.

Термин «редкоземельные» образован от словосочетания «редкие земли». Он объединяет химические элементы по следующим признакам:

  1. Вещества редко встречаются в естественной среде. В нынешнее время только 2% редкоземельных металлов добываются в земной коре. Извлечение металлов в большинстве случаев осуществляется из отходов производства минеральных удобрений. Добыча осуществляется с применением инновационных технологий.
  2. При взаимодействии с кислородом элементы образуют тугоплавкие, нерастворимые оксиды, называемые «землями».
  3. Представляют собой серебристо-белые металлы, тускнеющие при взаимодействии с воздухом в результате образования оксидной пленки.

Редкоземельный металл лантан является одним из самых дорогих химических элементов. При взаимодействии с алюминием он образует вещества с повышенной интенсивностью поглощения углерода и азота. Благодаря низкой активности по отношению к H2, его можно применять для изоляции водорода от окружающих газов.

Редкоземельные соединения отличаются между собой по химической активности. Этот параметр возрастает от скандия до лантана. До лютеция химическая активность снижается до минимальных значений. Это явления обусловлено постепенным снижением расстояния между атомами и энергетическими уровнями.

В научной литературе редкоземельные металлы имеют следующие обозначения:

  1. TR: аббревиатура, обозначающая “редкие земли” (Terrae rarae).
  2. REE: сокращение английского словосочетания Rare-earth elements (редкоземельные элементы).
  3. REM: сокращение английского словосочетания Rare-earth metals (редкоземельные металлы).

В российских учебниках редкоземельные элементы обозначаются аббревиатурами РЗЭ или РЗМ.

Стоимость палладия

Открытый в 1803 году палладий окрашен исключительно в серебристо-белый цвет, легко плавится, не тускнеет и не ржавеет. В природе этот металл встречается крайне редко, в основном его добывают из руд никеля, серебра и меди. Самым крупным поставщиком считается Южная Африка, но палладий в небольшом количестве также добывается в России.

Палладий — один из самых редких металлов на Земле

Палладий активно используется в ювелирном деле — смешивая его с золотом, можно получить так называемое «белое золото». Также из палладия чеканятся редкие монеты, посвященные памятным историческим датам. Также металл пользуется спросом в медицине, потому что из него изготавливаются детали для кардиостимуляторов и зубные протезы. В автомобилях палладий нужен для превращения вредных веществ в более безвредные химические соединения.

Химические свойства

Оксиды редкоземельных элементов. По часовой стрелке от центрального первого: празеодим, церий, лантан, неодим, самарий, гадолиний

Скандий, иттрий и лантаноиды имеют высокую реакционную способность. Химическая активность этих элементов особенно заметна при повышенных температурах. При нагревании до 300—400 °C металлы реагируют даже с водородом, образуя RH3 и RH2 (символ R выражает атом редкоземельного элемента). Эти соединения достаточно прочные и имеют солевой характер. При нагревании в кислороде металлы легко реагируют с ним, образуя оксиды: R2O3, CeO2, Pr6O11, Tb4O7 (лишь только Sc и Y при помощи образования защитной оксидной плёнки являются стойкими на воздухе, даже при нагревании до 1000 °C). Во время горения данных металлов в атмосфере кислорода выделяется большое количество тепла. При сгорании 1 г лантана выделяется 224,2 ккал тепла. Для церия характерной особенностью является свойство пирофорности — способность искриться при разрезании металла на воздухе.

Диоксид церия

Лантан, церий и другие металлы уже при обычной температуре реагируют с водой и кислотами-неокислителями, выделяя водород. Из-за высокой активности к атмосферному кислороду и воде куски лантана, церия, празеодима, неодима и европия следует хранить в парафине, остальные из редкоземельных металлов окисляются плохо (за исключением самария, который покрывается плёнкой оксидов, однако не полностью разъедается ей) и их можно хранить в нормальных условиях без противоокислительных веществ.

Химическая активность редкоземельных металлов неодинакова. От скандия до лантана химическая активность возрастает, а в ряду лантан — лютеций — снижается. Отсюда следует, что наиболее активным металлом является лантан. Это обуславливается уменьшением радиусов атомов элементов от лантана до лютеция с одной стороны, и от лантана до скандия — с другой.

Эффект «лантаноидной контракции» (сжатия) приводит к тому, что следующие после лантаноидов элементы (гафний, тантал, вольфрам, рений, осмий, иридий, платина) имеют уменьшенные радиусы атомов на 0,2—0,3 Å отсюда и очень схожие их свойства со свойствами соответствующих элементов пятого периода.

В элементах — скандий, иттрий, лантан — d-оболочка предпоследнего электронного слоя только начинает образовываться, поэтому радиусы атомов и активность металлов в этой группе возрастают сверху вниз. Этим свойством группа отличается от других побочных подгрупп металлов, у которых порядок изменения активности противоположный.

Поскольку радиус атома иттрия (0,89 Å) близок к радиусу атома гольмия (0,894 Å), то по активности этот металл должен занимать одно из предпоследних мест. Скандий же из-за своей активности должен располагаться после лютеция. В этом ряду ослабляется действие металлов на воду.

Редкоземельные элементы чаще всего проявляют степень окисления +3. Из-за этого наиболее характерными являются оксиды R2O3 — твёрдые, крепкие и тугоплавкие соединения. Будучи основными оксидами, они для большинства элементов способны соединяться с водой и создавать основания — R(OH)3. Гидроксиды редкоземельных металлов малорастворимы в воде. Способность R2O3 соединяться с водой, то есть основная функция, и растворимость R(OH)3 уменьшаются в той же последовательности, что и активность металлов: Lu(OH)3, а особенно Sc(OH)3, проявляют некоторые свойства амфотерности. Так, кроме раствора Sc(OH)3 в концентрированном NaOH, получена соль: Na3Sc(OH)6·2H2O.

Поскольку металлы данной подгруппы активны, а их соли с сильными кислотами растворимы, они легко растворяются и в кислотах-неокислителях, и кислотах-окислителях.

Все редкоземельные металлы энергично реагируют с галогенами, создавая RHal3 (Hal — галоген). С серой и селеном они также реагируют, но при нагревании.

История открытия редкоземельных металлов

Впервые редкоземельные металлы были изучены финским химиком Юханом Гадолином в конце XVIII столетия. В 1794 г. ученый во время изучения рудных образцов, найденных вблизи деревни Иттербю, открыл “редкую землю”, названную иттриевой. В начале XIX в. немецкий химик Мартин Клапрот создал первую классификацию редкоземельных соединений. Он раздел эти элементы 2 группы: иттриевые и цериевые.

Спустя несколько десятилетий шведский химик Мосандер выявил наличие новых редкоземельных металлов. В 1840-х г. ученый выделил из образцов “редких земель” окись церия, тербиевую и эрбиевую земли. К концу XIX столетия в мире было открыто 16 редкоземельных элементов. В XX в. был открыт последний редкоземельный металл — прометий. Ее исследованием занимались русские химики Маринский и Гленделин. На основе их экспериментов были проведены опыты по использованию осколков деления атомов урана в ядерном реакторе. По состоянию на 2019 г. группа редкоземельных металлов состоит из 17 химических соединений. В таблице Менделеева они расположены в ячейках 21, 39 – 57, 57 – 61.

Самые дорогие металлы в мире

Вопреки распространенному мнению о том, что самые дорогие металлы – это золото и платина, есть ряд других элементов, в тысячи раз дороже элементов. Представленные ниже изотопы считаются самыми дорогими и наиболее востребованными на планете. А  в их добыче и создании задействованы сотни тысяч профессионалов.

Как определяется ценность

На стоимость металлов влияет несколько факторов:

  1. Во-первых, их свойство и спектр использования. Конечно же, те вещества, которые не отличаются какими-то особенными показателями, не могут претендовать на высокую цену.
  2. Во-вторых, фактор распространенности металла. Как ни странно, но те представители, которые встречаются в природе, ценятся не столь дорого, как искусственно выведенные образцы.

Конечно же, для добычи некоторых природных изотопов тоже приходится тратить огромное количество ресурсов, но на лаборатории все же тратится больше.

Цена за грамм самых дорогих металлов

Стоимость самых ценных пород может повергнуть в шок:

Металл Цена (в долларах США)
Индий 0,5-0,7
Серебро 0,55
Рутений 1,5-2
Скандий 3-4
Рений 2,4-5
Осмий 12-15
Иридий 16-18
Палладий 25-30
Родий 35-40
Золото 35-45
Платина 40-50
Осмий-187 10 тысяч

Все они широко используются в разнообразных отраслях современной экономики: от космонавтики до ювелирного дела. Но самым дорогим металлом в мире считается Калифорний-252.

Самым дорогим металлом в мире считается Калифорний-252

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector