Релейная защита и автоматика

3.4.3 Газовая зашита трансформатора

Основным элементом газовой защиты трансформатора является газовое реле, которое устанавливается в маслопроводе между расширителем и баком трансформатора. Для защиты трансформатора от внутренних повреждений используются реле типа РГ43-66 с чашеобразными элементами. Реле срабатывает тогда, когда скорость движения масла и газов достигает значения 0.6-1.2 м/с. При этом время срабатывания 0,05-0,5 с. Газовая защита должна действовать на сигнал при слабом газообразовании и понижении уровня масла и на отключение при интенсивном газообразовании и дальнейшем понижении уровня масла.

3.4.1 Дифференциальная защита от междуфазных КЗ

В качестве основной защиты от междуфазных КЗ на одиночных трансформаторах мощностью 6,3 MBА и больше, устанавливается дифференциальная продольная токовая защита на основе реле ДЗТ-11, Расчет приведен для трансформатора Т1 для стороны 10,5кВ. Удобнее представлять формулы и расчеты в табличной форме.

Таблица № 8 Определение вторичных токов в плечах защиты.

Наименование расчетного параметра Численное значение для стороны
Т1
37 кВ 10,5кВ
Первичный номинальный ток трансформатора, А 250 880
Коэффициент трансформации трансформатора тока KI 600/5 600/5
Схема соединения обмоток трансформаторов тока Y
Вторичный ток в плечах защиты , A 3,6 7,3
Тип трансформатора тока ТФНД-35М ТПОЛ-10

Определяется первичный ток небаланса, приведенный к стороне 10,5 кВ, без учета третьей составляющей небаланса, обусловленной отличием расчетных и фактически устанавливаемых витков дифференциального реле:

Iнб = Iнб’ + Iнб’’ = (Kanep * Kодн *S + )*I(3)
к4 =(1*1*0,1+0,1)*7,12 = 1,424 A,

где — половина суммарного диапазона регулирования напряжения на стороне ВН.

Определяется предварительное значение тока срабатывания защиты по условию отстройки от броска тока намагничивания, приведенное к стороне 35 кВ:

Iс.з.т1=Кн*Iном вн=1,5*250 = 375 А.

Это условие при использовании реле ДЗТ-11 является единственным, так как наличие торможения в этом реле позволяет в расчетах тока срабатывания не учитывать ток небаланса (в отличие от расчета на основе реле РНТ-565).

Таблица № 9 Определение числа витков дифференциальной и уравнительной обмоток

Наименование параметра и расчетное выражение Численные значения

Ток срабатывания реле основной стороны (ВН)

Iс.р.осн =Iс.з*Ксх(3)
/Кi вн, А

375*/120=5,4

Число витков уравнительной обмотки основной стороны, расчетное, вит.

100/5,4=18,4
Числи кивков с основной стороны, округленное (в меньшую сторону), вит 18

Число витков уравнительной обмотки неосновной стороны, расчетное, вит.

18*3,6/7,3=8,9
Число витков реле неосновной стороны, округленное (в ближайшую сторону), вит. 9

Третья составляющая небаланса, приведенная к стороне 10,5 кВ, А

Ток небаланса с учетом третьей составляющей, приведенный к стороне НН, А 1424 +79=1503

Определяется число витков тормозной обмотки реле ДЗТ-11, необходимое для обеспечения не действия защиты при внешнем трехфазном КЗ (точка К4);

=1,5*1503*9/(7120*0,8)=3,56 вит,

где =0,8 — тангенс угла наклона касательной на графике тормозной характеристики реле типа ДЗТ-11. Принимаем ближайшее большее число витков тормозной обмотки = 4.

Определяем коэффициент чувствительности защиты при КЗ за трансформатором на выводах, когда ток повреждения проходит только через ТТ стороны 35 кВ, и торможение в реле, следовательно, отсутствует. Значение трехфазного тока при КЗ за трансформатором (точка К4), приведенное к стороне ВН, равно:

I(3)К4ВН
= I(3)К4НН
I
=7120/(37/10,5)=2021А.

В соответствии с таблицей 1 , для схемы соединения обмоток ТТ в треугольник расчетный ток в реле при двухфазном КЗ за трансформатором равен:

=1,5*2021/120=25,3 А.

Защита подключается к ТТ типа ТПОЛ-10, KI
=600/5. Коэффициент чувствительности:

К(2)
ч = /Iс.р. =25,3/5,4=4,7>2,0.

Расчет уставок дифференциальных защит трансформаторов Т1,Т2 приведён в табличной форме(Таблица 10,11).

Таблица№10 Определение вторичных токов в плечах защиты

Наименование параметра Значение параметра
Т1 Т2
Тип трансформатора ТД-16000/35 ТД-16000/35
Первичный номинальный ток трансформатора, А 250/880 250/880
Группа соединения трансформатора Y /-11 Y /-11
Коэффициент трансформации ТТ 600/5 600/5
Схема соединения обмоток ТТ / Y / Y
Вторичный ток в плечах защиты I2, A 7,3/3,6 7,3/3,6
Тип трансформатора тока ТПОЛ-10 ТПОЛ-10

Таблица №11 Определение числа витков дифференциальной, уравнительных и тормозной обмоток реле ДЗТ-11 защиты трансформаторов Т1,Т2

Наименование параметра Значение параметра
Т1 Т2
Ток срабатывания защиты , А 375 375
Ток срабатывания реле основной стороны (ВН), А 5,4 5,4
Число витков уравнительной обмотки основной стороны, расчетное, вит. 18,4 18,4
Числи витков реле основной стороны, округленное, вит 18 18
Число витков неосновной стороны, расчетное, вит. 8,9 8,9
Число витков неосновной стороны , округленное, вит. 9 9
Ток трехфазного КЗ приведённый к 10,5 кВ , А 7120 7120
Первичный ток небаланса, А 1424 1424
Третья составляющая небаланса, приведенная к стороне 10,5 кВ, А 79 79
Ток небаланса с учетом третьей составляющей, А 1503 1503
Число витков тормозной обмотки,расчетное,вит 3,56 3,56
Число витков тормозной обмотки принятое, вит 4 4
Ток в реле при двухфазном внешнем КЗ, А 77 77
Коэффициент чувствительности 14,3>2 14,3>2

Книги

Нормативные правовые актыОбщественные и гуманитарные наукиРелигия. Оккультизм. ЭзотерикаОхрана труда, обеспечение безопасностиСанПины, СП, МУ, МР, ГНПодарочные книгиПутешествия. Отдых. Хобби. СпортНаука. Техника. МедицинаКосмосРостехнадзорДругоеИскусство. Культура. ФилологияКниги издательства «Комсомольская правда»Книги в электронном видеКомпьютеры и интернетБукинистическая литератураСНиП, СП, СО,СТО, РД, НП, ПБ, МДК, МДС, ВСНГОСТы, ОСТыЭнциклопедии, справочники, словариДомашний кругДетская литератураУчебный годСборники рецептур блюд для предприятий общественного питанияЭкономическая литератураХудожественная литература

Надежность

Требование надежности состоит в том, что защита должна правильно и безотказно действовать на отключение выключателей оборудования при всех его повреждениях и нарушениях нормального режима работы, на действие при которых она предназначена и не действовать в режимах, при которых ее работа не предусматривается.


Например, при К.З. в точке К3 и отказе защиты В3 срабатывает защита В2, в результате чего вместо погашения одной подстанции Г мы обесточим три подстанции Г,Д,В, а при неправильной работе в нормальном режиме защиты В1 потеряют питание потребители четырех подстанций Б, В, Г, Д.
Таким образом, необходимо констатировать, что должна срабатывать только защита поврежденной линии. Защиты неповрежденных линий и других элементов системы (генераторов, трансформаторов) могут при этом происходить в действие, но не срабатывать. Срабатывание защит неповрежденных элементов должна иметь место только в случае, если они предназначены действовать как резервная при отказе защиты или выключателя поврежденной линии.
Основным предпосылками, обеспечивающими как надежность срабатывания, так и надежность несрабатывание является высокое качество используемых реле, характеризуемое их принципом действия, конструкцией и технологией исполнения, высокое качеств вспомогательных устройств и правильное ведение эксплуатации. Однако имеются факторы, противоположно воздействующие на две рассмотренные стороны надежности. Чем больше минимальное число реле и других элементов, которое должно участвовать в срабатывании защиты тем меньше надежность ее срабатывания.
При наличии в защите нескольких параллельно работающих независимых устройств, а иногда и отдельных реле или элементов надежность срабатывания повышается. С другой стороны понижается надежность несрабатывания.
Необходимо иметь в виду что устройства РЗА при повреждениях в электрической системе в целом должны по воздействиям соответствующих, обычно электрических величин, значительно чаще не срабатывать, чем срабатывать.
Учитывая выше изложенное, в настоящее время максимальное упрощение схем защит следует считать одном из основных требований техники релейной защиты. Требование надежности является весьма важным. Отказ в работе или неправильное действие какой-либо защиты всегда приводит к дополнительным отключениям и т.п.

Селективное действие

Селективное действие — это такое действие релейной защиты, при котором обеспечивается отключение только повреждённого элемента энергосистемы. Релейная защита может иметь два вида селективности:

  • Абсолютную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. При повреждении соседних элементов энергосистемы такие защиты принципиально не работают.
  • Относительную селективность. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне.

Для обеспечения селективного действия релейной защиты с относительной селективностью, такие защиты как правило, выполняются с выдержками времени, что является их недостатком. А защиты с абсолютной селективностью, как правило, выполняются без выдержки времени, что является их достоинством.

Защиты с относительной селективностью могут использоваться для обеспечения дальнего резервирования, а защиты с абсолютной селективностью — нет.

Классификация

Всё разнообразие приборов релейной защиты классифицируется по следующим основным признакам:

По типу подключения они бывают первичными и подключаются непосредственно в электрическую сеть. Вторичные приборы подсоединяются в неё с помощью трансформатора, дающего гальваническую развязку.

По исполнению они выпускаются электромеханическими: в них сеть замыкается и размыкается с помощью механических контактов. В современных электронных аппаратах цепью управляют полупроводники, при этом не происходит физического размыкания контактов.

По назначению оно может выполнять две задачи: логическую и измерительную функции. Логические приборы принимают решение на основе изменяющихся внешних характеристик системы. Измерительные аппараты производят только замер её значений.

По методу работы приборы классифицируются на прямые и косвенные изделия. Изделия прямого действия механически связаны с блоком отключения, а косвенные управляют механизмом отключения электропитания.

Принцип действия

Непрерывный мониторинг всех элементов энергетической системы с реакцией на появление повреждений и аварийные режимы есть главные функции релейной защиты. В электрических цепях энергосистемы устанавливаются специальные выключатели. Они выполняют отключение токов, которые появляются в результате повреждений и аварий. Защита должна определить участок с повреждением и воздействием на ближайший выключатель, который способен отключить участок от энергосистемы выполнить отключение. Пример показан на изображении ниже:

Однако отключения это не единственное назначение релейной защиты. Защитные устройства должны различать свойства нарушения и по возможности либо автоматически выполнять действия для того чтобы нормальный режим в энергосистеме был восстановлен, либо сигнализировать соответствующим службам, которые смогут принять необходимые меры по этому нарушению.

В современных электросетях используются и другие группы устройств автоматики:

  • автоматическое повторное включение;
  • автоматическое включение резервного питания;
  • автоматическая частотная разгрузка.

Эти три основные группы лишь часть перечня. Релейная защита имеет с ними наиболее тесное и первостепенное взаимодействие.

Наиболее часто защитные системы устраняют различные виды короткого замыкания, показанные на изображении ниже:

Причинами таких повреждений могут стать:

  • межвитковые короткие замыкания в электрических двигателях и трансформаторах;
  • разрушение изоляционного материала в токоведущих частях со временем и под воздействием неблагоприятных факторов окружающей среды;
  • механические повреждения;
  • перенапряжения;
  • состояние проводов линий электропередачи при сильном ветре и гололёде;
  • оставленные подключенными и забытые после ремонта заземления.

В дополнение к перечисленным причинам повреждений в электрической сети могут возникать режимы с параметрами, выходящими за установленные значения для работающего оборудования, так называемые «ненормальные режимы»:

  • сверхток, который превосходит номинальный ток и дополнительно нагревает токоведущие части, а также их изоляцию сокращая срок их нормальной работоспособности;
  • перенапряжения, вызванные отключениями электрогенераторов и протяжённых высоковольтных линий электропередачи;
  • нарушение правильной фазировки роторов электрогенераторов, работающих параллельно, что приводит к качаниям и понижению напряжения у потребителей электроэнергии;
  • возникновение асинхронного режима в синхронном генераторе, что приводит к уменьшению напряжения у потребителей и вызывает риск потери устойчивости энергосистем с параллельно работающими электрогенераторами.

В зависимости от своего назначения системы защиты соответствуют:

  • требованиям для ситуаций связанных с повреждениями;
  • то же самое, но для ненормальных режимов.

В ситуациях с повреждениями релейная защита должна обладать

  • избирательностью, иначе – «селективностью», чтобы максимально точно выбирать электрические цепи, связанные с местом повреждения и выполнять оптимальные отключения;
  • быстродействием, поскольку большая электрическая мощность, расходуемая в месте повреждения, и тепло, связанное с ней, приводят к более разрушительным последствиям при увеличении времени отключения;
  • чувствительностью, чтобы фиксировать повреждение на необходимом удалении от места его возникновения;
  • надёжностью, чтобы срабатывание происходило только при возникновении повреждения в заданной области и не происходило по ошибке при его отсутствии.

При ненормальных режимах в целом требования такие же, как и для повреждений. Отличие заключается только в менее жёстких требованиях к быстродействию систем защиты.  В некоторых случаях отключение может быть сделано ручном режиме и от защиты необходимо получить лишь сигнал для этого.

1.3 Расчет параметров энергосистемы

Параметры энергосистемы также приведены к стороне 10,5 кВ:

Х с
=UСР2
/(*SК(3)
)=10,52
/(*520)=0,1224 Ом;

EСР
=UСР
/=10,5/=6,06 кВ.

2. Расчет токов короткого замыкания

Расчет токов КЗ производим без учета подпитки со стороны нагрузки.

Определяем эквивалентное сопротивление от энергосистемы до точки КЗ и рассчитываем ток по формуле:

Iкз=Eс/Zэкi;

Результаты расчетов сведены в таблицу №5.

Таблица №5 Расчетное значение тока трехфазного КЗ

Рис.2.Схема замещения

3. Выбор и обоснование типа защит

Согласно ПУЭ, в качестве защиты от токов, обусловленных короткими замыканиями за трансформаторами (Т4, Т5, Т6), могут использоваться предохранители, если мощность этих трансформаторов не превышает 1 МВА.

Для одиночно работающих трансформаторов Т1, Т2 мощностью 6,3 MBA и более устанавливаются следующие типы защит:

— от многофазных КЗ в обмотках и на выводах — дифференциальная продольная токовая защита; для проектируемых подстанций при расчете дифференциальной защиты рекомендуйся использовать наиболее совершенное реле с торможением серии ДЗТ,

— для защиты от токов, протекающих через трансформатор при КЗ на шинах низшего напряжения (внешнее КЗ), используют МТЗ с минимальной выдержкой времени;

— для защиты от перегрузки на всех трансформаторах устанавливается МТЗ;

— от понижения уровня масла и от повреждений внутри кожуха, сопровождающихся выделениями газа, предусматривается газовая защита

3.1 Защита цеховых трансформаторов

Выбираем для зашиты трансформаторов Т4, Т5, Т6 предохранители типа ПКТ из условий отстройки от максимального рабочего тока и от броска тока намагничивания при включении трансформатора на холостой ход.

Исходя из первого условия, например для трансформатора Т4:

IРАБ.МАХ Т4
=ST4
/(*UНОМ T4
)=630/(*10,5)=34,64 А

По второму условию обычно принимают номинальный ток плавкой вставки, равным

Iном.пл.вст т4 = 2,0 • Iном т4 = 2,0 • 34,64 = 69,3 А

где 2,0 — коэффициент отстройки от броска тока намагничивания трансформатора.

Выбираем для Т4 предохранитель с номинальным током 80 А. По время-токовой характеристике оцениваем время плавления при двухфазном КЗ за трансформатором.

Результаты выбора сводим в таблицу №6.

Таблица №6Расчет параметров плавких предохранителей

Обозначение на схеме

Мощность Т,

КВА

Iном т,

А

Тип предохранителя

Iном.пл.вст,

А

Время плав л,

с

Т4 630 34,64 ПКТ-103-10-80 80 0,25
Т5 400 22 ПКТ- 103- 10-50 50 0,2
Т6 630 34,64 ПКТ- 103- 10-80 80 0,25

Времятоковую характеристику предохранителя с наибольшим номинальным током переносим из на карту селективности. Известно, что отклонения ожидаемого тока плавления плавкого элемента при заданном времени плавления от типовых значений достигают ± 20%. Поэтому типовая характеристика 1 должна быть смещена вправо на 20 %.

3.2 Защита магистральной линии

Устанавливаем двухступенчатую токовую защиту, выполненную по двухрелейной схеме на основе реле прямого действия типа РТ-40.Токовая отсечка в данном случае может быть эффективной ,так как достаточно велико различие между токами КЗ в месте подключения ближайшего трансформатора Т4 (Iк(3)
=1750А) и в месте в месте установки защиты магистральной линии(Iк(3)
=1120А) Для определения типа трансформаторов тока двухступенчатой защиты рассчитаем максимальный рабочий ток, который равен сумме номинальных токов трансформаторов Т4, Т5, Т6 :

Ipa6.maxwl = Iном т = 34,64+34,64+22 = 91,28 А.

Выбираем ТПЛ-10К класса Р, КI
= 600 / 5.

Классификация реле

Все применяемые реле в системе могут быть выполнены на основе определённого оборудования. Релейная защита может быть выполнена на следующих типах реле:

Электромеханической конструкции. Принцип их действия основан на притягивании и отпускании подвижной части реле при прохождении, через катушку электромагнита, электрического тока. При этом происходит размыкание или замыкание контактов;

  • Полупроводниковые. Они изготавливаются на основе полупроводниковых приборов (диодов, транзисторов, тиристоров) которые выполняют роль электрического ключа в схеме;
  • Цифровые. Основаны на работе микропроцессорной техники, обработка данных происходит не в аналоговом, а в цифровом формате, образуя блок релейной защиты. Существует возможность программирования таких цифровых устройств, что добавляет в работу РЗА автоматизации без участия персонала.

Устройства РЗА можно разделить также и по сложности их применения. К простым относятся:

  1. Максимальная токовая или токовая отсечка. Она применяется даже в обычных автоматических выключателях, применяемых в быту;
  2. От минимального и максимального напряжения. В быту это так называемые устройства барьеры.
  3. Дифференциальная, которая основана на сравнении токов, проходящих по каждой из фаз;
  4. Газовая. Это одна из разновидностей защит трансформаторов от выхода из нормального рабочего режима работы;
  5. Замыкание на землю. Срабатывает при пробивании изоляции или касании токопроводящих частей к земле.

Сложные виды РЗА включают в свой состав:

  1. Устройства контроля изоляции как цепей постоянного таки переменного тока;
  2. Системы отбора напряжения;
  3. Различные системы контроля температур, давления и других параметров оборудования;
  4. Контроль и наблюдение за сопротивлением изоляции цепей аккумуляторных батарей и т. д.

Чтобы добиться надёжности и правильной работы электрических аппаратов входящих в данную защиту, нужно чтобы все элементы были выполнены из качественных комплектующих таких как реле, трансформаторов тока и т. д. В настоящее время релейная защита это очень популярная и востребованная часть электроэнергетики.

ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ

Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.

Общим для всех устройств релейной защиты является наличие одних и тех же функциональных блоков:

  • измерительных органов;
  • логики;
    исполнительных устройств;
  • сигнализации.

Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.

Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.

В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.

Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.

Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.

Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.

Селективность.

Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.

Различают системы защитной автоматики с абсолютной и относительной селективностью. К первому типу относятся устройства, реагирующие только на нарушения режима строго в пределах защищаемого участка.

Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.

Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.

Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).

Быстродействие.

Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.

Главным показателем быстродействия служит время срабатывания защищающего устройства, которое отсчитывается от момента возникновения аварийного режима до момента подачи защитой сигнала на отключение выключателя.

Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя.

Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.

То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).

Чувствительность.

Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.

Надёжность.

Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.

Основные свойства релейной защиты

Селективность (избирательность)

Селективность — свойство релейной защиты, характеризующее способность выявлять именно поврежденный элемент электроэнергетической системы и отключать этот элемент от исправной части электроэнергетической системы (ЭЭС). Защита может иметь абсолютную или относительную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне. А селективность отключения поврежденного элемента ЭЭС при этом обеспечивается дополнительными средствами (например, выдержкой времени срабатывания).

Быстродействие

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Чувствительность

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы.
Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов, при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено.
Иными словами, надежность — это свойство релейной защиты, характеризующее её способность выполнять свои функции в любых условиях эксплуатации.
Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

3-1. Токовая отсечка и максимальная токовая защита одиночных линий 35 и 110 кВ

Основные условия расчета. Основные условия расчета максимальных токовых защити токовых отсечек, изложенные в Главе 1, справедливы и для линий 35 и 110 кВ без ответвлений и с ответвлениями. В выражении (1-1), коэффициент самозапуска kсзп определяется по суммарному току самозапуска нагрузки всех трансформаторов, подключенных к защищаемой линии и ко всем следующим (по направлению тока) линиям того же напряжения. Для этого в расчетной схеме все нагрузки, подключаемые к каждому трансформатору, представляются сопротивлениями обобщенной или бытовой нагрузки, приведенными к рабочей максимальной мощности трансформатора. Высоковольтные двигатели учитываются отдельно.

Виды

Релейная автоматика может осуществлять контроль за следующими основными параметрами линии электропередач и оборудования и при достижении опасных значений выполняет его отключение:

Максимальный ток. При достижении тока выше определенного значения срабатывает отключающее реле.

Направление мощности. Такой вид контроля помимо величины тока учитывает его направление.

Разница токов на входе и выходе в оборудование. Он бережет генераторы и трансформаторы с помощью сравнения параметров на входе и выходе. При достижении опасных характеристик производится отключение потребителей.

Логические приборы определяют места коротких замыканий и позволяют отключить опасный участок.

Пониженное и повышенное напряжение. При наличии коротких замыканий напряжение понижается. Повышение напряжения может быть вызвано ударом молнии. Любое изменение напряжения опасно для оборудования и электрических сетей. При изменении значений автоматика отключает линию.

Автоматическая разгрузка линии при снижении частоты тока в ней. При снижении частоты тока в электросети автоматика отключает часть потребителей. При повышении частоты необходимо наоборот нагружать сеть, для снижения частоты вращения генератора.

Исходя из этого перечня выполняемых задач, становится понятно, для чего нужна релейная защита. Но существуют изделия, которые осуществляют не выключение, а автоматическое подключение потребителей. Оно может осуществляться для повторного включения энергоснабжения через заданный интервал времени или для автоматического ввода резервной мощности. В этом случае в сеть вводится дополнительные генерирующие мощности для компенсации дефицита.

Ссылки по теме

  • ПУЭ 7. Правила устройства электроустановок. Издание 7
    / Нормативный документ от 13 декабря 2006 г. в 18:44
  • Зевин М.Б. Парини Е.П. Справочник молодого электромонтера
    / Нормативный документ от 14 октября 2019 г. в 16:45
  • РД 153-34.0-03.150-00
    / Нормативный документ от 10 ноября 2007 г. в 23:59
  • Князевский Б.А. Трунковский Л.Е. Монтаж и эксплуатация промышленных электроустановок
    / Нормативный документ от 17 октября 2019 г. в 12:36
  • Руководство по устройству электроустановок 2009
    / Нормативный документ от 21 января 2014 г. в 15:40
  • Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ. Том 10 
    / Нормативный документ от 2 марта 2009 г. в 18:12
  • ГОСТ Р 50571.19-2000
    / Нормативный документ от 7 декабря 2006 г. в 22:39
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector