10 самых крепких металлов в мире

Технология производства лития

Производство самого легкого металла в мире сводится к разложению его природных соединений. Это достаточно трудоемкая процедура ввиду большого количества составных элементов. Содержание лития в добываемом сырье в среднем составляет 21 грамм на одну тонну. В промышленном производстве используют три метода разложения соединений лития: известковый, сульфатный и сернокислотный. Первые два подразумевают спекание руды с оксидом/карбонатом кальция или сульфатом калия.

Протекает процедура при температуре 250-300 градусов. Затем полученную массу обрабатывают водой, получая карбонат или сульфат лития. После этого проводится процедура хлорирования с целью получения хлорида лития. И, наконец, окончательную процедуру разделения проводят при помощи электролиза расплава в присутствии хлорида калия или бария, которые понижают температуру плавления литиевого хлорида. Чистый металл оседает на катоде, откуда его можно собирать для дальнейшей переработки.

Сернокислотный способ подразумевает растворение руды в серной кислоте с образованием сульфата лития. Дальнейшая процедура протекает по указанной выше схеме. Самый легкий металл применяется для производства эффективных полупроводников в сплавах с другими металлами, из него изготавливают аноды, используемые затем в процедурах электролиза, литий входит в состав ракетного топлива, в металлургии применяется в качестве сильного восстановителя менее активных металлов. В качестве различных соединений литий используется в производстве продукции для многих отраслей промышленности и народного хозяйства.

Осмий и иридий

Осмий и иридий – представители металлов платиновой группы, имеют почти одинаковую плотность. В своем чистом виде в природе встречаются невероятно редко, а чаще всего – в сплаве друг с другом. Иридий по природе своей обладает высокой твердостью, из-за чего плохо поддается металлообработке, как механической, так и химической.

Осмий и иридий обладают наивысшей плотностью

Активно применять иридий в промышленности стали сравнительно недавно

Раньше его использовали с осторожностью, поскольку его физико-химические характеристики были изучены не до конца. Теперь иридий используют даже в изготовлении ювелирных изделий (в качестве инкрустаций или в сплаве с платиной), хирургических инструментов и деталей для сердечных стимуляторов

В медицине металл просто незаменим: его биопрепараты могут помочь побороть онкологию, а облучение его радиоактивным изотопом может остановить процесс роста раковых клеток.

Две трети добываемого в мире иридия уходит в химическую промышленность, а остальное распределяется между другими отраслями производства – напыления в металлургической индустрии, товарах народного использования (элементы перьевых ручек, ювелирные изделия), медицине при производстве электродов, элементов кардиостимуляторов и хирургических инструментов, а также для улучшения физико-химических и механических свойств металлов.

Твёрдость иридия по шкале Мосса – 5

Осмий – серебристо-белый металл с голубоватым отливом. Он был открыт позже иридия на год, а сейчас его нередко находят в железных метеоритах. Помимо высокой твёрдости, осмий отличается своей дороговизной – 1 грамм чистого металла оценивается в 10 тысяч долларов. Еще одной его особенностью считается его вес – 1 литр расплавленного осмия равен 10 литрам воды. Правда, ученые еще не нашли применения этому свойству.

Из-за редкости и высокой стоимости осмий задействуется только там, где никакой другой металл не может быть использован. Широкого применения ему так и не нашли, да и нет смысла в поисках, пока поставки металла не станут регулярными. Сейчас осмий используется для изготовления инструментов, требующих высокой точности. Изделия из него почти не изнашиваются и обладают значительной прочностью.

Показатель твёрдости осмия достигает 5.5

Производство металлов

Подготовка руды

Основные статьи: Руда, Добыча полезных ископаемых, Обогащение руд, Металлургия и Металловедение

Металлы извлекают из земли в процессе добычи полезных ископаемых. Добытые руды служат относительно богатым источником необходимых элементов. Для выяснения нахождения руд в земной коре используются специальные поисковые методы, включающие разведку и исследование рудных месторождений. Месторождения руд разрабатываются открытым или карьерным способом и подземным или шахтным способом. Иногда применяется комбинированный (открыто-подземный) способ разработки рудных месторождений.

После извлечения руд они, как правило, подвергаются обогащению. При этом из исходного минерального сырья выделяют один или несколько полезных компонентов — рудный концентрат(ы), промпродукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Работа с рудой

Из добытой и обогащённой руды металлы извлекаются, как правило, с помощью химического или электролитического восстановления. В пирометаллургии для преобразования руды в металлическое сырьё используются высокие температуры, в гидрометаллургии применяют для тех же целей водную химию. Используемые методы зависят от вида металла и типа загрязнения.

Когда металлическая руда является ионным соединением металла и неметалла, для извлечения чистого металла она обычно подвергается выплавлению — нагреву с восстановителем. Многие распространённые металлы, такие как железо, медь, олово, плавят с использованием углерода в качестве восстановителя. Некоторые металлы, такие как алюминий и натрий, не имеют ни одного экономически оправданного восстановителя и извлекаются с применением электролиза.

Сульфидные руды не улучшаются непосредственно до получения чистого металла, но обжигаются на воздухе, с целью преобразования их в окислы.

Вольфрам

Увенчивает наш список самых твёрдых металлов на Земле блестящий серебристо-серый вольфрам. По шкале Мооса твердость вольфрама равна 6, как и у урана, но, в отличие от последнего, он не является радиоактивным. Природная твёрдость, однако, не лишает его гибкости, потому вольфрам идеально подходит для ковки разных металлических изделий, а его устойчивость к высоким температурам позволяет применять его в осветительных приборах и электронике. Потребление вольфрама не достигает больших оборотов, и главной тому причиной является его ограниченное количество в месторождениях.

Благодаря высоким показателям плотности вольфрам широко используется в оружестроении для производства тяжеловесов и артиллерийских снарядов. Вообще вольфрам активно используется в военной инженерии – пули, противовесы, баллистические ракеты. Следующим по популярности использования этого метала является авиация. Из него изготавливают двигатели, детали электровакуумных приборов. В строительстве используют режущие инструменты из вольфрама. Также он является незаменимым элементом при производстве лаков и светоустойчивых красок, огнестойких и водонепроницаемых тканей.

Вольфрам считается наиболее тугоплавким и прочным

Изучив свойства и сферы потребления каждого металла, сложно однозначно сказать, какой же самый твердый металл в мире, если брать во внимание не только показатели шкалы Мооса. Каждый из представителей имеет ряд преимуществ

Например, титан, не обладающий сверхвысокой твердостью, прочно занял первое место среди самых используемых металлов. А вот уран, твердость которого достигает наивысшей отметки среди металлов, не так популярен из-за слабой радиоактивности. А вольфрам, который не излучает радиации и имеет наивысшую прочность и очень хорошие показатели податливости, не может быть активно использован из-за ограниченных ресурсов.

Определение

Понятие «тяжёлые металлы» было предложено немецким химиком Леопольдом Гмелиным в 1817 году.

Известно около сорока различных определений термина тяжёлые металлы, и невозможно указать на одно из них, как наиболее принятое. Соответственно, список тяжёлых металлов согласно разным определениям будет включать разные элементы. Используемым критерием может быть относительная атомная масса свыше 50, и тогда в список попадают все металлы, начиная с ванадия, независимо от плотности. Другим часто используемым критерием является плотность, примерно равная или большая плотности железа (8 г/см3), тогда в список попадают такие элементы как свинец, ртуть, медь, кадмий, кобальт, а, например, более легкое олово выпадает из списка. Существуют классификации, основанные и на других значениях пороговой плотности (например — плотность 5 г/см3) или атомного веса. Некоторые классификации делают исключения для благородных и редких металлов, не относя их к тяжёлым, некоторые исключают нецветные металлы (железо, марганец).

Термин тяжёлые металлы чаще всего рассматривается не с химической, а с медицинской и природоохранной точек зрения.

Таким образом, при включении в эту категорию учитываются не только химические и физические свойства элемента, но и его биологическая активность и токсичность, а также объём использования в хозяйственной деятельности.

Самый тяжелый металл

Ученые до сих пор спорят, какой металл является самым тяжелым:

  • осмий (атомная масса — 76);
  • иридий (атомная масса — 77).

Масса обоих металлов разнится буквально на тысячные доли.

Иридий
открыт в 1803 году англичанином Теннатом.

Ученый работал с полиметаллической рудой, в которой в разных пропорциях наблюдалось присутствие: серебра, платины и свинца.

К изумлению химика там же оказался иридий. Находка англичанина-химика была уникальной, поскольку иридия в земной коре практически нет. Его находят только в том случае, если в месте поисков когда-либо падал метеорит. Ученые склонны полагать, что малое присутствие иридия в земной коре обусловлено именно его массой. Существует научное мнение о том, что большая часть иридия буквально «просочилась» в центр земной коры в момент зарождения Земли.

Главной особенность иридия являются:

  • устойчивость к любому механическому и химическому воздействию (иридий практически не поддается никакой обработке);
  • колоссальная химическая инертность.

В промышленности изотоп иридия используется палеонтологами на раскопках для определения, какие из них имеют искусственное происхождение.

Осмий был открыт на год позже — в 1804 году. Его также обнаружили в полиметаллической руде. Металл этот также с величайшим трудом подвергается обработке, как химической, так и механической.

На планете Земля осмий встречается, подобно иридию, в местах падений метеоритов.

Однако есть несколько регионов, в которых отмечается крупные месторождения осмия:

  • Казахстан;
  • Америка;
  • ЮАР (здесь месторождение осмия особенно большое).

В промышленности осмий используется в производстве ламп накаливания. Кроме того, его используют там, где требуются тугоплавкие материалы. А из-за повышенной плотности осмия его взяли на вооружения медики — хирургический инструментарий изготавливается именно из него.

1.

Рейтинг самых прочных металлов в мире возглавляет именно иридий – серебристо-белый, твердый и тугоплавкий металл, который относится к платиновой группе. В природе высокопрочный элемент встречается крайне редко, и часто входит в соединение с осмием. Из-за своей природной твердости он плохо поддается механической обработке и обладает высокой стойкостью к воздействию химический веществ. Иридий с большим трудом реагирует на воздействие галогенов и перекиси натрия.

Этот металл играет важную роль в повседневной жизни. Его добавляют к титану, хрому и вольфраму для улучшения стойкости к кислым средам, применяют при изготовлении канцелярских принадлежностей, используют в ювелирном деле для создания ювелирных изделий. Стоимость иридия остается высокой из-за ограниченного присутствия в природе.

Для того чтобы определить, какой самый тяжелый металл в мире, нужно рассмотреть двух основных претендентов на это звание, а именно — осмий и иридий. Два самых плотных элемента таблицы Менделеева занимают в ней, соответственно, места под номерами 76 и 77. Плотность данных металлов составляет, исходя из их свойств, 22,6 грамма на кубический сантиметр.

Чтобы понять, что же собой представляет самый тяжелый металл, можно сравнить обыкновенную пробку с пробкой, изготовленной из любого претендента на звание «Самый тяжелый металл в мире». Так, чтобы привести весы в равновесие, понадобится чуть более ста обыкновенных пробок, в то время как они должны будут уравновесить всего лишь одну, выполненную из осмия или иридия.

Оба металла были открыты в начале XIX века. Их открытие приписывают ученому С. Теннанту, который в 1804 году проводил анализ осадков, полученных в результате обработки платиновых самородков «царской водкой» (одна часть азотной и три части В изучаемом осадке он и выявил два химических элемента, которым присвоил названия осмия и иридия. Иридий получил свое название от греческого слова, обозначающего радугу. Это связано с тем, что соли данного элемента изменяют окраску в зависимости от условий.

Исследования были продолжены К. Клаусом, который, начиная с 1841 г, получил финансирование на проведение исследований остатков обработки самородной платины с целью получения дополнительных порций этого драгоценного металла. Поставленная цель так и не была достигнута, однако в процессе работы ученый решил провести тщательное изучение остаточных элементов.

Причина, по которой сложно определить, какой самый из этих двух элементов, заключается в том, что разница в плотности составляет сотую часть грамма. Ситуация усугубляется тем, что самородных элементов в природе не существует.

Добывают самый тяжелый металл из самородков, которые представляют собой соединение рутения, осмия, платины, палладия и самого иридия. Полученный элемент представляет собой порошкообразное вещество, которое можно ковать при очень высоких температурах. В то же время иридий является так называемым «платиновым металлом», что определяет некоторые его свойства, среди которых полная невосприимчивость к кислотам их смесям. К примеру, взаимодействие с «царской водкой» не приводит к каким-либо последствиям. Иридий растворяется только в некоторых щелочных смесях, к примеру, в дисульфате калия.

Для чего же используют самый тяжелый металл? Из него изготавливают тигли, которые идеально подходят для работы в лабораторных условиях, а также специальный вид мундштука, который применяют для получения тугоплавкого стекла. Его также можно встретить в дорогих перьевых ручках и в стержнях шариковых ручек. К тому же, в связи со снижением себестоимости, иридий стали применять в автомобилестроении, где он широко используется в изготовлении свечей зажигания. Следует отметить, что полученные свечи имеют высокую стоимость, однако их изготовление оправдывает себя, поскольку в результате получают очень долговечные и надежные комплектующие.

Современные цены на этот самый тяжелый металл составляют 35 американских долларов за грамм иридия.

Старлит

Это пластик, выдерживающий невероятно высокую температуру: его тепловой порог настолько высок, что сначала изобретателю просто не поверили. Лишь после демонстрации возможностей материала в прямом эфире на телевидении, с создателем старлита связались сотрудники Британского Центра Атомного Вооружения.

Моррис Уард

В отличие от других термостойких материалов, старлит не становится токсичным при высокой температуре, также он невероятно лёгок. Его можно применять при строительстве космических аппаратов, самолётов, огнезащитных костюмов или в военной промышленности, но, к сожалению, старлит так и не покинул пределы лаборатории: его создатель Моррис Уард умер в 2011-м году, не запатентовав своё изобретение и не оставив никаких описаний. Всё, что известно о строении старлита — что в его состав входит 21 органический полимер, несколько сополимеров и небольшое количество керамики.

Как получают вольфрам?

В природе чистый вольфрам не встречается. Он входит в состав горных пород в виде триоксида, а также вольфрамитов железа, марганца и кальция, реже меди или свинца. По оценкам ученых содержание вольфрама в земной коре в среднем составляет 1,3 грамма на одну тонну. Это достаточно редкий элемент по сравнению с другими видами металлов. Содержание вольфрама в руде после добычи обычно не превышает 2%. Поэтому добытое сырье отправляется на обогатительные фабрики, где методом магнитной или электростатической сепарации массовая доля металла доводится до отметки 55-60%.

Процесс его получения разделяется на технологические этапы. На первом этапе выделяют чистый триоксид из добытой руды. Для этого используют метод термического разложения. При температурах от 500 до 800 градусов по Цельсию все лишние элементы расплавляются, а тугоплавкий вольфрам в виде оксида легко можно собрать из расплава. На выходе получается сырье с содержанием оксида шестивалентного вольфрама на уровне 99%.

Полученное соединение тщательно измельчают и проводят восстановительную реакцию в присутствии водорода при температуре 700 градусов по Цельсию. Это позволяет выделить чистый металл в виде порошка. Далее его спрессовывают под высоким давлением и спекают в водородной среде при температурах 1200-1300 градусов по Цельсию. После этого полученная масса отправляется в электрическую плавильную печь, где под воздействием тока нагревается до температуры свыше 3000 градусов. Так вольфрам переходит в расплавленное состояние.

Для окончательной очистки от примесей и получения монокристаллической структурной решетки используется метод зонной плавки. Он подразумевает, что в определенный момент времени расплавленной находится только некоторая зона из общей площади металла. Постепенно двигаясь, эта зона перераспределяет примеси, в результате чего в конечном итоге они скапливаются в одном месте и их легко можно удалить из структуры сплава.

Готовый вольфрам поступает на склад в виде штабиков или слитков, предназначенных для последующего производства нужной продукции. Для получения сплавов вольфрама все составные элементы измельчают и смешивают в виде порошка в необходимых пропорциях. Далее производится спекание и плавка в электрической печи.

Рений

Парамагнитный рений, один из более «тяжёлых» элементов высокой плотности (21.03 г/см3). На земле RE существует в чистом виде, особенно значительно содержание в виде примеси в молибдените до 0,5%. Ярко выраженными свойствами RE считаются высочайшая прочность, жаростойкость, характеризуется тугоплавкостью, стойкостью к окислению, пластичностью, малой коррозией при воздействии многих химических веществ. Рений — дорогостоящий металл. Сферы применения многообразны: электроника, ракетостроение, авиастроение (например, производство запчастей для сверхзвуковых истребителей), металлургическая отрасль, медицина, судостроение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector