Все об скважности сигнала

Демодуляция

На приёмном конце канала связи установлен демодулятор. В демодуляторе пачки импульсов подаются на последовательный вход[прояснить] регистра сдвига. После вдвигания всех битов пачки импульсов в регистр сдвига слово из регистра сдвига в параллельном коде записывается во входной регистр цифро-аналогового преобразователя (ЦАП). ЦАП преобразует кодированные отсчёты переданного аналогового сигнала снова в аналоговый вид. На выходе ЦАП образуется ступенчатый аналоговый сигнал. Сглаживание ступенек производится фильтром нижних частот (ФНЧ), на выходе которого образуется переданный аналоговый сигнал. Частота среза ФНЧ выбирается меньшей или равной удвоенной частоте отсчётов.

ШИМ контроллер: принцип работы

ШИМ сигналом управляет ШИМ контроллер. Он управляет силовым ключом благодаря изменениям управляющих импульсов. В ключевом режиме транзистор может быть полностью открытым или полностью открытым. В закрытом состоянии через p-n-переход идет ток не больше нескольких мкА, то есть мощность рассеивания близка к нулю. В открытом состоянии идет большой ток, но так как сопротивление p-n-перехода мало, происходят небольшие теплопотери. Больше тепла выделяется в при переходе из одного состояния в другое. Однако благодаря быстроте переходного процесса в сравнении с частотой модуляции, мощность этих потерь незначительна.

Все это позволило разработать высокоэффективный компактный широтно импульсный преобразователь, то есть с малыми теплопотерями. Резонансные преобразователи с переключением в 0 тока ZCS позволяют свести теплопотери к минимуму.

Аналоговая ШИМ

В аналоговых ШИМ-генераторах управляющий сигнал формируется при помощи аналогового компаратора, когда на его инвертирующий вход подается пилообразный или треугольный сигнал, а на неинвертирующий — непрерывный модулирующий.

Выходные импульсы идут прямоугольной формы. Частота их следования соответствует частоте пилы, а длительность плюсовой части импульса зависит от времени, когда уровень постоянного модулирующего сигнала, идущего на неинвертирующий вход компаратора, выше уровня пилообразного сигнала, подающегося на инвертирующий вход. В период когда напряжение пилообразного сигнала будет превышать модулирующий сигнал — на выходе будет фиксироваться отрицательная часть импульса.

Во время когда пилообразный сигнал подается на неинвертирующий вход, а модулирующий — на инвертирующий, выходные прямоугольные импульсы будут положительными, когда напряжение пилы будет выше уровня модулирующего сигнала на инвертирующем входе, а отрицательное — когда напряжение пилы станет ниже сигнала модулирующего.

Цифровая ШИМ

Работая с цифровой информацией, микроконтроллер может формировать на выходах или 100% высокий или 0% низкий уровень напряжения. Но для эффективного управления нагрузкой такое напряжение на выходе нужно изменять. Например, когда осуществляется регулировка скорости вращения вала мотора или при изменении яркости светодиода.

Вопрос решают ШИМ контроллеры. То есть, 2-хуровневая импульсно-кодированная модуляция — это серия импульсов, характеризующаяся  частотой 1/T и либо шириной Т, либо шириной 0. Для их усреднения применяется передискретизация. При цифровой ШИМ прямоугольные подимпульсы, которыми и заполнен период, могут занимать любое место в периоде. Тогда на среднем значении сигнала за период сказывается лишь их количество. Так как процесс осуществляется на частоте в сотни кГц, можно добиться плавной регулировки. ШИМ контроллеры решают эту задачу.

Можно провести следующую аналогию с механикой. Когда маховик вращается при помощи двигателя, при включенном двигателе маховик будет раскручиваться или продолжать вращение, если двигатель выключен, маховик будет тормозить из-за сил трения. Однако, если движок включать/выключать на несколько секунд, вращение маховика будет держаться на определенной скорости благодаря инерции. Чем дольше период включения двигателя, тем быстрее раскрутится маховик. Аналогично работает и ШИМ модулятор. Так работают ШИМ контроллеры, в которых переключения происходят в секунду тысячи раз, и частоты могут достигнуть единиц мегагерц.

Использование ШИМ-контроллеров обусловлено их следующими преимуществами:

  • стабильностью работы;
  • высокой эффективностью преобразования сигнала;
  • экономией энергии;
  • низкой стоимостью.

Получить на выводах микроконтроллера (МК) ШИМ сигнал можно:

  • аппаратным способом;
  • программным способом.

В каждом МК есть встроенный таймер, генерирующий ШИМ импульсы на определённых выводах. Это аппаратный способ. Получение ШИМ сигнала при помощи команд программирования более эффективно за счет разрешающей способности и дает возможность задействовать больше выводов. Но программный способ вызывает высокую загрузку МК, занимая много памяти.

Средние цены

Для того, чтобы понять в каком ценовом диапазоне находятся МРРТ контроллеры различных производителей, можно рассмотреть стоимость моделей, приведенных выше, это:

  • КЭС 100/20 MPPT – от 10000,00 рублей;
  • КЭС DOMINATOR MPPT 250/60 – от 40000,00 рублей;
  • Epsolar MPPT TRACER-2215BN 20А 12/24В – от 9000,00 рублей;
  • IT6415ND 60A 12V/24V/36 В – от 30000,00 рублей.
  • Victron BlueSolar 100/15 12/24В 15А – от 11000,00 рублей;
  • Victron BlueSolar 150/70 12/24/48В 70А – от 55000,00 рублей.

Как видно из приведенных цифр, наиболее дешевые, это модели китайского производства, а наиболее дорогие – европейских производителей.

Продукция отечественных предприятий несколько дороже устройств, произведенных в Китае, но дешевле изготовленных в Европе.

Виды модуляции

Аналоговая модуляция

  • Амплитудная модуляция (АМ)

    • Амплитудная модуляция с одной боковой полосой (SSB — однополосная АМ)
    • Балансная амплитудная модуляция (БАМ) — АМ с подавлением несущей
    • Квадратурная модуляция (QAM)
  • Угловая модуляция

    • Частотная модуляция

      Линейная частотная модуляция (ЛЧМ)

      (ЧМ)

    • Фазовая модуляция (ФМ)
  • Сигнально-кодовая модуляция (СКМ), в англоязычном варианте Signal Code Modulation (SCM)

Импульсная модуляция

a — несущий сигналb — полезный сигналc — амплитудно-импульсная модуляцияd — частотно-импульсная модуляцияe — широтно-импульсная модуляцияf — фазово-импульсная модуляция

Импульсно-кодовая модуляция (ИКМ или PCM — Pulse Code Modulation)

Дифференциальная импульсно-кодовая модуляция
Адаптивная дифференциальная импульсно-кодовая модуляция (АДИКМ или ADPCM — Adaptive DPCM) (ДИКМ или DPCM — Differential PCM)

Широтно-импульсная модуляция (ШИМ)

Амплитудно-импульсная модуляция (АИМ)

Частотно-импульсная модуляция (ЧИМ)
Скважностно-импульсная модуляция

Фазово-импульсная модуляция (ФИМ)

Дельта-модуляция (ДМ или Δ-модуляция)

Сигма-дельта модуляция (ΣΔ)

Основные характеристики

  • Энергетическая эффективность (потенциальная помехоустойчивость) характеризует достоверность передаваемых данных при воздействии на сигнал аддитивного белого гауссовского шума, при условии, что последовательность символов восстановлена идеальным демодулятором. Определяется минимальным отношением сигнал/шум (Eb/N0), которое необходимо для передачи данных через канал с вероятностью ошибки, не превышающей заданную. Энергетическая эффективность определяет минимальную мощность передатчика, необходимую для приемлемой работы. Характеристикой метода модуляции является кривая энергетической эффективности — зависимость вероятности ошибки идеального демодулятора от отношения сигнал/шум (Eb/N0).
  • Спектральная эффективность CΔF{\displaystyle {C \over \Delta F}} — отношение скорости передачи данных к используемой полосе пропускания радиоканала.
    • AMPS: 0,83
    • NMT: 0,46
    • GSM: 1,35
  • Устойчивость к воздействиям канала передачи характеризует достоверность передаваемых данных при воздействии на сигнал специфичных искажений: замирания вследствие многолучевого распространения, ограничение полосы, сосредоточенные по частоте или времени помехи, эффект Доплера и др.
  • Требования к линейности усилителей. Для усиления сигналов с некоторыми видами модуляции могут быть использованы нелинейные усилители класса C, что позволяет существенно снизить энергопотребление передатчика, при этом уровень внеполосного излучения не превышает допустимые пределы. Данный фактор особенно важен для систем подвижной связи.
  • Сложность реализации модемов определяется вычислительным ресурсом, требуемым для реализации алгоритма демодуляции, и требованиями к характеристикам аналоговой части.

Цифровые коды в ИКМ

Для кодирования отсчётов в ИКМ применяются самые разнообразные двоичные коды, например:

  • обычное представление чисел в двоичной системе счисления, причём последовательная передача битов двоичного числа может осуществляться как младшими битами вперёд, так и старшими битами вперёд;
  • разнообразные коды с обнаружением и устранением ошибок в канале передачи, например, код Хемминга, код Рида — Соломона и др. Простейший из них — избыточный код с передачей бита чётности;
  • коды, устраняющие постоянную составляющую в кодированном импульсном двухуровневом сигнале, например, самосинхронизирующийся .

Симметричные сигналы — коэффициент заполнения полупериода

Для симметричных сигналов описанный выше коэффициент заполнения будет равен нулю, так как среднее арифметическое симметричного сигнала равно нулю. Для анализа симметричных периодических сигналов применяется понятие коэффициента заполнения полупериода. Для его расчета используется формула:

[Обобщенный коэффициент заполнения полупериода] = [Среднеарифметическое значение напряжения сигнала за полупериод, В] / [Амплитуда сигнала (A), В]

Коэффициент заполнения полупериода используется для расчета схем с трансформаторами, катушками индуктивности или конденсаторами. Например, чтобы определить, до какого напряжения за полупериод зарядится конденсатор, нужно посчитать довольно замысловатый интеграл или воспользоваться простой формулой:

[Напряжение на конденсаторе в конце полупериода, В] = [Напряжение на конденсаторе в начале полупериода, В] + [Обобщенный коэффициент заполнения полупериода] * [Амплитуда силы тока, А] * [Длительность полупериода, с]

Аналогично для катушки индуктивности:

[Сила тока в катушке индуктивности в конце полупериода, А] = [Сила тока в начале полупериода, А] + [Обобщенный коэффициент заполнения полупериода] * [Амплитуда напряжения, В] * [Длительность полупериода, с]

Обобщенные коэффициенты заполнения для разных распространенных сигналов можно взять из таблиц. Иногда известно не амплитудное, а действующее значение. Тогда полезен будет другой коэффициент: отношение среднего арифметического значения к действующему. С математической точки зрения он равен отношению среднего арифметического к среднему квадратичному.

[Напряжение на конденсаторе в конце полупериода, В] = [Напряжение на конденсаторе в начале полупериода, В] + [Отношение среднего арифметического значения силы тока к действующему] * [Действующее значение силы тока, А] * [Длительность полупериода, с]

[Сила тока в катушке индуктивности в конце полупериода, А] = [Сила тока в начале полупериода, А] + [Отношение среднего арифметического значения напряжения к действующему] * [Действующее значение напряжения, В] * [Длительность полупериода, с]

Для синусоидального сигнала

[Обобщенный коэффициент заполнения полупериода] = 0.637

[Отношение среднего арифметического значения напряжения к действующему] = 0.9

Для треугольного сигнала

[Обобщенный коэффициент заполнения полупериода] = [L, с] / [T, с] / 2

[Отношение среднего арифметического значения напряжения к действующему] = [Корень квадратный из 3] * [L, с] / [T, с] / 2

В литературе нередко понятием ‘Коэффициент заполнения’ обозначают то коэффициент заполнения периода, то коэффициент заполнения полупериода, то отношение среднего значения к действующему. Так что, о чем идет речь, приходится понимать по контексту.

(читать дальше…) :: (в начало статьи)

 1   2   3 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Конструирование (проектирование и расчет) источников питания и преобра…
Разработка источников питания и преобразователей напряжения. Типовые схемы. Прим…

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму…
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи….

Корректор коэффициента мощности. Схема. Расчет. Принцип действия….
Схема корректора коэффициента мощности…

Полумостовой импульсный стабилизированный преобразователь напряжения, …
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание…

ШИМ, PWM контроллер. Усилитель ошибки. Частота. Инвертирующий, неинвер…
ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты….

Корпус РЭА, РЭУ своими руками. Самодельный. Электроника. Радиоэлектрон…
Изготовим корпус для своего электронного изделия…

Изготовление дросселя, катушки индуктивности своими руками, самому, са…
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы…

Практические ограничения

Прежде чем мы закончим, я должен отметить, что эти идеализированные симуляции не раскрывают основного источника неидеальной производительности ЦАП базе ШИМ, а именно ненадежных и, следовательно, непредсказуемых напряжений высокого и низкого логических уровней. Напряжение на аналоговом выходе прямо пропорционально амплитуде цифрового ШИМ сигнала, и, таким образом, изменения реальных напряжений высокого и низкого логических уровней ШИМ сигнала приведут к соответствующим изменениям выходного напряжения ЦАП. Эта проблема особенно актуальна для приложений с питанием от батареек; если микроконтроллер питается напрямую от батареи, напряжение высокого логического уровня по мере разряда батареи будет постепенно уменьшаться. Однако даже при стабилизированном питании вы можете не знать точное напряжение питания – стабилизатор с точностью ±2% означает, что точность выходного напряжения ЦАП будет (в лучшем случае) ±2%. И даже если у вас очень точный стабилизатор напряжения, и нет значительных отклонений в напряжении питания, вызванных разрядом батареи или изменениями условий окружающей среды, тем не менее, на реальные напряжения высокого и низкого логических уровней может влиять рабочее состояние устройства, генерирующего ШИМ сигнал (обычно микроконтроллер). Одним из способов решения этой проблемы является использование внешней буферной микросхемы, которая поможет ШИМ сигналу поддерживать предсказуемые уровни напряжения, но в этот момент вы снова находитесь на компромиссной территории – вы потратите 40 с небольшим центов на буферную микросхему или 71 цент на крошечный 8-разрядный ЦАП?

Широтно-импульсная модуляция в частотной области

В предыдущей статье мы видели, что сигнал с широтно-импульсной модуляцией можно «сгладить» до достаточно стабильного напряжения в диапазоне от уровня земли до высокого логического уровня (например, 3,3 В); сглаживание выполняется простым фильтром нижних частот. Таким образом, мы можем реализовать цифро-аналоговое преобразование, используя встроенное программное обеспечение или аппаратное обеспечение для изменения коэффициента заполнения в ШИМ сигнале в соответствии со следующей формулой:

\(\text{Необходимое напряжение ЦАП}=A\times \text{коэффициент заполнения}\)

где A («амплитуда») – напряжение высокого логического уровня.

Давайте начнем наше более подробное исследование ЦАП на базе ШИМ с рассмотрения представления ШИМ сигнала в частотной области. Вот схема LTspice:

Рисунок 1 – Схема моделирования в LTspice

Как видно из характеристик PULSE, ширина импульса составляет 5 мкс, а период – 10 мкс. Таким образом, коэффициент заполнения составляет 50%, а несущая частота ШИМ сигнала составляет 100 кГц

Также обратите внимание, что A = 3,3 В, а время нарастания и спада составляет 10 нс. Вот сигнал во временной области:

Рисунок 2 – Представление ШИМ сигнала во временной области

А вот и результаты быстрого преобразования Фурье (БПФ):

Рисунок 3 – Представление рассматриваемого ШИМ сигнала в частотной области

Вы можете узнать в этой диаграмме спектр общего вида, который мы ожидаем увидеть от прямоугольного сигнала, то есть всплеск на несущей частоте, а затем уменьшающиеся по амплитуде гармоники на частотах, равных несущей частоте, умноженной на 3, несущей частоте, умноженной на 5, и так далее. Однако БПФ LTspice не показывает нам постоянной составляющей, которая не равна нулю, потому что этот прямоугольный сигнал не симметричен относительно оси x. Я изменил следующий график, чтобы включить компонент постоянной составляющей:

Рисунок 4 – Измененное представление в частотной области, учитывающее наличие постоянной составляющей

Итак, нам нужны стабильные 1,65 В, расположенные в левом краю, и нам не нужен этот проблемный всплеск на частоте 100 кГц (а также все более высокочастотные всплески). В этот момент вы, вероятно, можете понять, зачем мы используем фильтр нижних частот в ЦАП на базе ШИМ: фильтр сохраняет компонент постоянной составляющей, подавляя всё остальное. Если бы у нас был идеальный фильтр, у нас было бы совершенно стабильное напряжение ЦАП – просто оглянемся на предыдущий график и представим фильтр с АЧХ в виде «кирпичной стены», которая на частоте 50 кГц переходит от отсутствия затухания к полному затуханию. Все не связанные с постоянной составляющей компоненты сигнала будут устранены, и мы получим постоянное напряжение на уровне 1,65 В.

В этот момент вам может быть интересно узнать, как меняется спектр при изменении ширины импульса. Что если частотные составляющие перемещаются так, что фильтр нижних частот становится менее эффективным? Рассмотрим следующие два результата БПФ для коэффициентов заполнения 10% и 90%:

Рисунок 5 – Спектр ШИМ сигнала с коэффициентом заполнения 10%Рисунок 6 – Спектр ШИМ сигнала с коэффициентом заполнения 90%

Спектр, безусловно, изменяется относительно коэффициента заполнения 50%, но одно не меняется: первый всплеск находится на несущей частоте. Таким образом, независимо от коэффициента заполнения, мы имеем довольно большую полосу частот (в данном случае от постоянного напряжения до 100 кГц), в которой фильтр нижних частот может переходить от отсутствия затухания к существенному затуханию.

Контакты ШИМ в микроконтроллере AVR ATmega16

Микроконтроллер Atmega16 имеет 4 контакта для использования ШИМ модуляции — PB3(OC0), PD4(OC1B), PD5(OC1A), PD7(OC2). Более наглядно они представлены на следующем рисунке.

Также ATmega16 имеет два 8-битных (Timer0 и Timer2) и один 16-битный таймер (Timer1). Для понимания принципов формирования ШИМ мы должны понимать основы работы с этими таймерами. Как известно, частота представляет собой количество циклов в секунду поэтому она однозначно связано зависимостью с временем. То есть чем более высокая частота нам нужна, тем более быстрый таймер мы должны использовать. Чем выше частота ШИМ, тем более точно мы можем управлять ее параметрами.

В данной статье для управления ШИМ в микроконтроллере ATmega16 мы будем использовать его Timer2. С его помощью можно выбрать коэффициент заполнения (duty cycle) ШИМ в широких пределах. Кратко рассмотрим основы этого процесса.

Пульсации и отклик при одном полюсе

Давайте посмотрим, какое качество ЦАП мы можем получить с помощью простейшего RC фильтра. Начнем с частоты среза (обозначаемой fср) в середине полосы от постоянной составляющей до частоты несущей:

\(f_{ср}=50\ кГц=\frac{1}{2\pi RC};\ выбираем\ C=10\ нФ\ \ \Rightarrow\ \ R\approx318\ Ом\)

Рисунок 7 – Схема моделирования в LTspice: генератор ШИМ сигнала и RC фильтр нижних частотРисунок 8 – Пульсации напряжения, полученного на выходе фильтра нижних частот

Не очень хорошо… Очевидно, нам нужно большее затухание, чем сейчас. Давайте переместим частоту среза на 1 кГц:

Рисунок 9 – Схема моделирования в LTspice: генератор ШИМ сигнала и RC фильтр нижних частот с частотой среза 1 кГцРисунок 10 – Время установления напряжения, полученного на выходе фильтра нижних частот с частотой среза 1 кГц

Теперь пульсации значительно уменьшились, но вы, вероятно, заметили, что у нас возникла новая проблема: выходной сигнал достаточно долго достигает требуемого напряжения ЦАП. Это происходит потому, что более высокое сопротивление в RC фильтре не только снижает частоту среза, но также увеличивает постоянную времени – большее сопротивление означает меньший ток, протекающий к конденсатору, и, следовательно, конденсатор заряжается медленнее. Следующий график помогает показать ограничение, накладываемое этим действием на ЦАП:

Рисунок 11 – Время установления напряжения

На этом графике вы видите довольно плохое «время установления», которое представляет собой характеристику, которая показывает, как быстро ЦАП может установить свой выходной сигнал на новое запрограммированное напряжение. График показывает, что, когда выходной сигнал увеличивается или уменьшается на половину диапазона полной шкалы, эта конкретная схема приводит к времени установления почти 1 мс. Не поймите меня неправильно, во многих приложениях время 1 мс было бы вполне приемлемым, но это не меняет того факта, что эта производительность установления никак не сравнится с тем, что вы ожидаете увидеть от типового ЦАП.

Приведенные выше результаты приводят нас к первому из двух основных компромиссов, связанных с проектированием ЦАП на базе ШИМ.

Компромисс № 1: более низкая частота среза означает меньшие пульсации и большее время установления; более высокая частота среза означает большие пульсации и меньшее время установления. Поэтому вы должны подумать о своем приложении и решить, хотите ли вы, чтобы ЦАП быстрее реагировал на изменения или был менее подвержен пульсациям выходного сигнала.

Управление многоуровневыми синусоидальными ШИМ (СШИМ)[ | ]

Напряжение на участке инвертора.(а) Выходное напряжение с применением СШИМ. (b) Выходное напряжение с добавлением синусоидальной третьей гармоники. Несколько методов были разработаны для сокращения искажения в многоуровневых инверторах, на основе классического СШИМ с треугольным носителем. Некоторые методы используют расположение источника, другие используют сдвиг фазы из нескольких несущих сигналов . Рисунок справа показывает типичное напряжение, сгенерированное одной секцией инвертора путем сравнения синусоидального сигнала с треугольным несущим сигналом.

Множество Nc-каскадов в одной фазе с их источниками, смещенными на угол θс = 360°/Nc и использующими то же управляющее напряжение, производят напряжение нагрузки с самым маленьким искажением. Этот результат был получен для многоэлементного инвертора в семи-уравневой конфигурацией, которая использует три подключенных последовательно сегмента в каждой фазе. Самое маленькое искажение получено, когда источник смещен на угол в θс = 360°/3 = 120 °.

Довольно обыденной практикой в промышленном применении для многоуровневого инвертора является вставка третьей гармоники в каждый сегмент, как показано на Рисунок справа(b), для увеличения выходного напряжения. Еще одна положительная сторона многоуровневого СШИМ -эффективная частота переключения напряжения нагрузки в Nc-количество раз, и частота переключения каждого сегмента, в зависимости от ее несущего сигнала. Это свойство позволяет сокращать частоты переключения каждого сегмента, таким образом уменьшая потери на переключении.

Тепловая мощность, выделяемая на ключе при ШИМ

В ШИМ в качестве ключевых элементов использует транзисторы (могут быть применены и др. полупроводниковые приборы) не в линейном, а в ключевом режиме, то есть транзистор всё время либо разомкнут (выключен), либо замкнут (находится в состоянии насыщения). В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность также мала. В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность, выделяемая в ключе, значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

1. Rtr→∞P=U2R→{\displaystyle R_{tr}\rightarrow \infty \leftrightarrow P={{\frac {{U}^{2}}{R}}\rightarrow 0}}

2. Rtr→P=I2R→{\displaystyle R_{tr}\rightarrow 0\leftrightarrow P={I}^{2}R\rightarrow 0}

Широтно-импульсный преобразователь

Широтно-импульсный преобразователь осуществляет преобразование кодовых сигналов из диапазона чисел от 0 до 256 в длительность импульсов. Причем если на входе нуль, то на выходе формируется импульс отрицательной полярности и максимальной длительности, равной периоду следования импульсов широтно-импульсного преобразователя. При сигнале на входе, равном 256, формируется положительный импульс максимальной длительности; при сигнале на входе, равном 128, на выходе широтно-импульсного преобразователя формируются за период два разнополярных импульса одинаковой длительности.

Реверсивные широтно-импульсные преобразователи ( с быстродействующими полупроводниковыми управляющими устройствами) превосходят по своим динамическим качествам известные схемы реверсивных управляемых выпрямителей с совместным и раздельным управлением, так как не требуют фильтра для ограничения скорости изменения управляющего сигнала на входе и не имеют паузы между работой выпрямителей разного знака и сопутствующего ей размыкания контура регулирования.

Широтно-импульсные преобразователи постоянного напряжения подразделяют на нереверсивные и реверсивные.

Широтно-импульсные преобразователи постоянного напряжения подразделяют на нереверсивные и реверсивные. Последние представляют собой автономные мостовые инверторы напряжения, широко используемые для регулирования электроприводов. Нереверсивные преобразователи в свою очередь подразделяют на последовательные и параллельные.

Применение широтно-импульсных преобразователей для управления торможением придает новые качества режиму электродинамического торможения

Изменяя скважность замыкания накоротко сопротивления тормозного реостата, можно управлять тормозным током, а следовательно, и тормозным моментом в широких пределах.

Система импульсного регулирования скорости вращения двигателя независимого возбуждения.

В качестве широтно-импульсного преобразователя используется тиристорный преобразователь с одной ветвью коммутации.

Схема электропривода троллейного электровоза с ши-ротно-импульсным управлением.

В качестве широтно-импульсного преобразователя в схеме применяется тиристорный преобразователь с двумя ветвями коммутации.

Характерная особенность нереверсивного широтно-импульсного преобразователя постоянного тока состоит в том, что он преобразует плавно изменяющийся входной сигнал в последовательность импульсов напряжения постоянной амплитуды и полярности, но разной длительности

Здесь Rm и LH — активное сопротивление и индуктивность нагрузки; П — тиристорный преобразователь постоянного тока; ШИМ — широтно-импульсный модулятор; Дг — диод, шунтирующий нагрузку; V — напряжение источника электрической энергии; % — напряжение управления; / н М 2 — ток нагрузки, / 1 — ток, протекающий через нагрузку в интервале времени O t tn — iz — ток, протекающий через нагрузку в интервале времени tu t T; tu — длительность импульса напряжения; Т — период коммутации; ts / T — скважность импульсов напряжения.
 . Модуляция в широтно-импульсных преобразователях может осу ществляться на постоянной или переменной несущей частоте.

Модуляция в широтно-импульсных преобразователях может осу ществляться на постоянной или переменной несущей частоте.

Таким образом, широтно-импульсный преобразователь является звеном существенно нелинейным, а следовательно, для моделирования импульсных систем необходимо иметь возможность осуществлять имитацию на аналоговых машинах генераторов импульсов и широтно-импульсных модуляторов.

Регулятор состоит из таристорного широтно-импульсного преобразователя постоянного тока, необходимой контактной аппаратуры и устройства управления. В качестве широтно-импульсного преобразователя используется преобразователь, выполненный по схеме несимметричного тиристорного триггера.

Весьма важными областями применения широтно-импульсного преобразователя является привод станков и привод грузоподъемных механизмов на морских судах.

Кроме того, у широтно-импульсных преобразователей отсутствуют ограничения по разрешающей способности, характерные для управляемых выпрямителей при фазовом управлении ( проводящий вентиль не может быть заперт в любой момент времени), что важно при конструировании электроприводов, оптимальных по быстродействию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector