Какими свойствами обладает любой кристалл

Кристаллическая решётка

Основная статья: Кристаллическая решётка

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны:

  • ромбическая и моноклинная сера;
  • графит и алмаз, которые являются гексагональной и кубической модификациями углерода;
  • среди сложных веществ — кварц, тридимит и кристобалит, которые представляют собой различные модификации диоксида кремния.

Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней. Это зависит от условий образования кристалла. При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д. Неизменными  остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.

Рис. 2. Кристалл медного купороса неправильной формы при выращивании в домашних условиях приобретает форму призмы, в основании которой лежит ромб.

Закон постоянства гранных углов было установлен в конце XVII века датским ученым Стено (1699) на кристаллах железного блеска и горного хрусталя, впоследствии этот закон был подтвержден М.В. Ломоносовым (1749) и французским ученым Роме де Лиллем (1783). Закон постоянства гранных углов получил название первого закона кристаллографии.

Закон постоянства гранных углов объясняется тем,  что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу. На этом основан один из методов диагностики кристаллов.

Для измерения у кристаллов двугранных углов были изобретены специальные приборы – гониометры.

Какими лечебными свойствами обладают украшения с кварцем?

Наши далекие предки верили, что кварц обладает массой полезных свойств. Его в своей практике широко использовали древние лекари и знахари. Считалось, что камни могут наполнять тело человека живительной энергией. Это способствовало восстановлению здоровья, возвращению тонуса, психологического равновесия и физической активности.

Минерал оказывает комплексное воздействие на организм:

Оказывает положительное воздействие на нервную систему. В частности, человек, который регулярно носит кварцевые украшения, не страдает от депрессий, хронической усталости, меланхолии. Нормализует режим бодрствования и сна. Обладатель удивительного самоцвета забывает о бессоннице, ночных кошмарах и других подобных проблемах

Повышает концентрацию внимания и память, что особенно важно для работников интеллектуального труда. Помогает полностью расслабиться во время отдыха и обрести душевное равновесие

Не следует забывать, что самоцвет имеет множество разновидностей. Лечебные свойства камня кварц во многом зависят от его вида. Например, аметист способен победить алкогольную зависимость. Кроме того, он уменьшает голод, что необходимо людям с очень хорошим аппетитом. Характеристика мориона свидетельствует о том, что он оптимально подходит людям, которые имеют проблемы с кровеносной системой. Камень укрепляет сосудистые стенки и восстанавливает нормальный сердечный ритм.

Золотые серьги SOKOLOV с кварцем (перейти в каталог SUNLIGHT)

Типы вещества

Чтобы понять, чем же так выделяются кристаллы из всего многообразия веществ и материалов, рассмотрим строение любого вещества на молекулярном (или атомном) уровне. Обычно такие исследования проводят с помощью метода рентгеноструктурного анализа.

Расположение частиц в аморфных (снизу) и кристаллических (сверху) телах

Можно увидеть, что у некоторых веществ, таких как мед, стекло, различные виды резин на любых приближениях во взаимном расположении частиц отсутствует какая-либо структура, т.е. все частицы расположены беспорядочно, хаотично.
При нагреве таких веществ их частицы постепенно начинают уходить со своих прежних случайных мест все дальше и дальше, из-за все увеличивающихся температурных колебаний — начинается процесс размягчения вещества. Расстояние между частицами постепенно увеличивается, однако сложно указать, точно ли вещество перешло в состояние жидкости, или же оно все еще является твердым веществом, здесь эта граница слишком уж размыта. Из-за подобного поведения эти вещества называют аморфными — не имеющими определенной формы, бесструктурными.
В то же время можно найти другие вещества, такие как лед, металлы, соли, для которых нагрев приводит к увеличению температуры только до определенного предела, а затем начинается переход твердого тела в жидкость, с сохранением постоянной температуры. И лишь когда вновь начнется повышение температуры вещества при его дальнейшем нагреве, можно отметить, что все тело перешло в жидкое состояние и нигде в расплаве не осталось осколков твердого вещества.
У некоторых сразу возникают вопросы из школьного курса физики — если телу передавали энергию для нагрева, а его температура была в этот момент постоянной, то куда же делась эта энергия?
Для ответа на этот вопрос вновь заглянем в структуру таких веществ и увидим, что все их частицы расположены в строгом порядке, вдоль бесконечных правильных рядов, растянувшихся по всему объему вещества, наподобие периодической пространственной решетки. В узлах таких решеток находятся частицы вещества, которые не находятся там неподвижно, а совершают очень небольшие температурные колебания, удерживаясь на своем месте силами электромагнитного притяжения и отталкивания.
Если постепенно нагревать вещество, то можно отметить, как частицы при достижении определенной скорости колебаний уже не могут удерживаться этими силами и начинают покидать свое место. У отдельных частиц скорость может быть намного выше средней, но через небольшое время они натыкаются на медленные частицы, отдавая им часть своей скорости и помогая покинуть решетку. Именно поэтому температура таких тел при плавлении не изменяется, а переданная им энергия идет на постепенное разрушение решетки. Лишь по завершению процесса скорость частиц вновь начнет в среднем подниматься — именно эта граница и отмечает переход тела в жидкое состояние. Исторически такие решетки называют кристаллическими, а сами вещества — кристаллами.
Стоит отметить, что так как частицы в решетке находятся в своеобразной квантово-механической ловушке, вызванной взаимодействием с соседними частицами, то кристаллическая решетка является состоянием с меньшей энергией, чем обладает свободно перемещающиеся частицы вещества. Это объясняет эффект, возникающий при процессе, противоположном плавлению — кристаллизации вещества из расплава или раствора, в котором переход от свободного состояния частиц к периодической структуре вызывает выделение тепла при сохранении все той же постоянной температуры.

Цвет минерала

Вопрос о природе цветовой окраски минералов очень сложен. Природа окрасок некоторых минералов еще не определена. В лучшем случае цвет минерала определяется спектральным составом отражаемого минералом светового излучения или обуславливается его внутренними свойствами, каким-либо химическим элементом, входящим в состав минерала, тонко рассеянными включениями других минералов, органического вещества и другими причинами. Красящий пигмент иногда бывает, распространен неравномерно, полосами, давая разноцветные рисунки (например, у агатов).

Неравномерные полосы агата

Цвет некоторых прозрачных минералов меняется в связи с отражением падающего на них света от внутренних поверхностей, трещин или включений. Это явления радужной окраски минералов халькопирита, пирита и иризации – голубые, синие переливы лабрадора.

Некоторые минералы многоцветны (полихромные) и имеют разную окраску по длине кристалла (турмалин, аметист, берилл, гипс, флюорит и др.).

Цвет минерала иногда может быть диагностическим признаком. Например, водные соли меди имеют зеленый или синий цвет. Характер цвета минералов определяется визуально обычно путем сравнения наблюдаемого цвета с общеизвестными понятиями: молочно-белый, светло-зеленый, вишнево-красный и т.п. Этот признак не всегда характерен для минералов, так как цвета многих из них сильно варьируют.

Зачастую цвет обусловливается химическим составом минерала или наличием разных примесей, в которых присутствуют химические элементы-хромофоры (хром, марганец, ванадий, титан и др.). Механизм появления той или иной окраски на самоцветах до сих пор не всегда понятен, так как один и тот же химический элемент может окрашивать разные драгоценные камни в разный цвет: присутствие хрома делает рубин красным, а изумруд зеленым.

Радиоактивность

Радиоактивность может служить важным диагностическим признаком. Некоторые минералы, содержащие радиоактивные химические элементы (как уран, торий, тантал, цирконий, торий) нередко обладают значительной радиоактивностью, которую легко обнаружить бытовыми радиометрами. Для проверки радиоактивности сначала измеряют и записывают фоновую величину радиоактивности, затем к детектору прибора подкладывают минерал. Увеличение показаний более чем на 15% говорит о радиоактивности минерала. Радиоактивными минералами являются: абернатиит, баннерит, гадолинит, монацит, ортит, циркон и др.

Свечение

Светящийся флюорит

Некоторые минералы, которые сами по себе не светятся, начинают светиться при различных специальных условиях (нагревание, облучение рентгеновскими, ультрафиолетовыми и катодными лучами; при разламывании и даже царапании ). Различают следующие виды свечения минералов:

  1. Фосфоресценция — способность минерала светиться минуты и часы после воздействия на него определенными лучами (виллемит светится после облучения короткими ультрафиолетовыми лучами).
  2. Люминесценция — способность светиться в момент облучения некоторыми лучами (шеелит светится синим при облучении ультрафиолетовыми и лучами).
  3. Термолюминесценция — свечение при нагревании (флюорит светится фиолетово-розовым цветом).
  4. Триболюминесценция — свечение в момент царапания ножом или раскалывания (корунд).

Астеризм

Эффект астеризма или звездчатости

Астеризм или эффект звездчатости, присущ немногим минералам. Он заключается в отражении (дифракции) лучей света от включений в минерале, ориентированных вдоль определенных кристаллографических направлений. Лучшими представителями этого свойства являются звездчатый сапфир и звездчатый рубин.

В минералах с волокнистым строением (кошачий глаз), наблюдается тонкая полоска света, способная менять свое направление при повороте камня (переливчатость). Играющий свет на поверхности опала или сияющие павлиньи цвета лабрадора объясняются интерференцией света — смешением лучей света при их отражении от слоев упакованных шариков кремнезема (в опале) или от тончайших пластинчатых кристаллических вростков (лабрадор, лунный камень).

Постоянная температура плавления

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Температура, при которой начинается плавление, называется температурой плавления.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Анизотропность

Рис. 1. Пример анизотропности — кристалл минерала дистена. В продольном направлении его твердость  равна 4,5, в поперечном – 6. Parent Géry

Это свойство называется еще неравносвойственностью. Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям. Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости. В поперечных же направлениях расщепить пластинки слюды значительно труднее.

Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.

Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.

В каких сферах применяют кварц?

Горный кварц — ценное минеральное сырье. Сфере его использования не ограничивается одним ювелирным искусством. Минералы широко используют при изготовлении генераторов ультразвука, оптического оборудования, радио- и телефонной аппаратуры.

Применение кварца распространено в стекольной и керамической промышленности. Наиболее востребованы в этих областях горный хрусталь и чистый кварцевый песок. Подходит минерал для производства кремнеземистых огнеупоров и кварцевых стекол. Конечно, не стоит забывать о ювелирном деле. Здесь льдистый кварц и другие разновидности минерала применяют в качестве вставок в ювелирные изделия.

Самое важное свойство самоцвета — пьезоэффект. Его открыли в 1880 г французские ученые, братья Поль и Пьер Кюри

А использовать удивительное свойство минерала на практике впервые предложил их соотечественник Поль Ланжевен. Свое открытие он совершил в годы первой мировой войны. Француз предложил использовать ультразвук для того, чтобы обнаруживать подводные лодки неприятеля. А вот получать этот ультразвук и планировалось с помощью пьезоэффекта.

Изобретатель взял за основу плоскую, гладкую, полированную пластину кварца. Оборудовал ее электродами и держателем. В результате получился пьезоэлектрический резонатор — колебательный контур, обеспечивающий определенную частоту резонансных колебаний. В кратчайшие сроки необычное изобретение обрело широкую популярность не только во Франции, но и в других странах мира.

До недавнего времени пьезокварц использовали исключительно для военных нужд. Однако сегодня ситуация изменилась. Элементы применяют в различных отраслях промышленности, медицины и науки в качестве хороших источников ультразвука. Например, большое распространение получили пьезозажигалки и ультразвуковые устройства для борьбы с грызунами. Такое оборудование, работающее в течение нескольких дней, вызывает у вредителей дискомфорт. Они стремятся как можно быстрее покинуть помещение.

История открытия жидких кристаллов[править | править код]

Жидкие кристаллы открыл в 1888 году австрийский ботаник Ф. Рейнитцер (нем.)русск.

Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Само название «жидкие кристаллы» придумал Отто Леманн в 1904 году

Однако учёные не обратили особого внимания на необычные свойства этих жидкостей.

Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям.

Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманом после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы» открытию не нашлось применения.

Фундаментальный вклад в физику жидких кристаллов внёс советский учёный В. К. Фредерикс.

Первое практическое применение жидких кристаллов произошло в 1936 году, когда компания Marconi Wireless Telegraph запатентовала свой электро-оптический световой клапан.

В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом неоднородно нагретых участков поверхности. После того, как ему выдали патент на изобретение (U.S. Patent 3 114 836), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея получила жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.

Анизотропия кристаллов

Многим кристаллам присуще свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных веществах (большинстве газов, жидкостей, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят. Процесс неупругого деформирования кристаллов всегда осуществляется по вполне определённым системам скольжения, то есть лишь по некоторым кристаллографическим плоскостям и лишь в некотором кристаллографическом направлении. В силу неоднородного и неодинакового развития деформации в различных участках кристаллической среды между этими участками возникает интенсивное взаимодействие через эволюцию полей микронапряжений.

В то же время существуют кристаллы, в которых анизотропия отсутствует.

В физике мартенситной неупругости накоплен богатый экспериментальный материал, особенно по вопросам эффектов памяти формы и пластичности превращения. Экспериментально доказано важнейшее положение кристаллофизики о преимущественном развитии неупругих деформаций почти исключительно посредством мартенситных реакций. Однако принципы построения физической теории мартенситной неупругости неясны. Аналогичная ситуация имеет место в случае деформации кристаллов механическим двойникованием.

Значительные успехи достигнуты в изучении дислокационной пластичности металлов. Здесь не только понятны основные структурно-физические механизмы реализации процессов неупругой деформации, но и созданы эффективные способы расчёта явлений.

Виды кристаллов

Следует разделить идеальный и реальный кристаллы.

  • Идеальный кристалл — является математическим объектом, лишённым любых дефектов строения, а также имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.
  • Реальный кристалл — всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.

Правило Митчерлиха

Некоторые вещества, близкие по своей химической природе или структуре, образуют совершенно одинаковые по форме (изоморфные) кристаллы, например:

MgSO4 • 7Н2O, ZnSO4 • 7Н2O, NiSO4 • 7Н2O, КАl(SO4)2 • 12(Н2O), КСr(SO4)2 • 12(Н2O)

Явление изоморфизма было открыто в 1819 г. немецким химиком Эйльхардом Митчерлихом, заметившим, что многие соли одинакового состава образуют кристаллы почти тождественной формы. На этом основании он сделал обратное заключение: изоморфные вещества имеют одинаковое химическое строение. Правило Митчерлиха помогло установить точные значения атомных масс многих элементов. Например, из того факта, что сульфат калия, формула которого K2SO4была в то время уже известна, образует смешанные кристаллы с селенитом калия, Э. Митчерлих заключил, что селенат имеет состав K2SeO4, и смог рассчитать атомную массу селена.

Рис. 2. Узлы и плоскости кристаллической решетки

Правильная и постоянная форма кристаллов давно привлекала пристальное внимание ученых, видевших причину этого явления во внутреннем строении кристаллов. Так, И

Ньютон еще в 1675 г. писал: «Нельзя ли предположить, что при образовании кристалла частицы не только установились в строй и ряды, застывая в правильных фигурах, но также посредством некоторой полярной способности повернули свои одинаковые стороны в одинаковом направлении». Французский минералог и кристаллограф Рене Жюст Гаюи считал, что определенная форма кристаллов является следствием аналогичной формы молекул, образующих этот кристалл.

Однако такое представление продержалось не очень долго, по видимому, потому, что было чисто умозрительным. В 1813 г. У. Волластон предложил заменить многогранные молекулы Гаюи шарами или просто математическими точками. Так возникло представление о кристалле как о пространственной решетке. Каждую точку, в которой находится частица вещества, стали называть узлом кристаллической решетки, а параллельные и равноотстоящие плоскости, проходящие через узлы кристаллической решетки,— ее плоскостями (рис. 2). Некоторыми из этих плоскостей образованы естественные грани кристаллов.

Рис. 3. Элементарные ячейки кубической системы

Наименьшую часть кристаллической решетки, полностью передающую все характерные особенности ее структуры, называют элементарной ячейкой. Любой кристалл можно представить состоящим из таких точек, плотно прижатых друг к другу. Одной и той же кристаллической системе может соответствовать несколько элементарныхячеек. Рассмотрим, например, кубическую систему, все три координатные оси которой равны по длине и направлены под прямым углом друг к другу. Куб с частицей в каждой вершине представляет собой простую кубическую элементарную ячейку (рис. 3, а)В кубической гранецентрированной ячейке частицы вещества занимают все вершины И центры каждой грани (рис. 3, б).И наконец, объемно-центрированная кубическая ячейка содержит частицы в вершинах и в центре куба (рис. 3, в).

Статья на тему Форма кристаллов

  • ← Предыдущая
  • Следующая →
  • Главная Строение вещества

Переохлажденные растворы.

Иногда насыщенный раствор при охлаждении не кристаллизуется. Такой раствор, который содержит в определенном количестве растворителя больше растворенного вещества, чем это «положено» при данной температуре, называется пересыщенным раствором. Пересыщенный раствор невозможно получить даже очень длительным перемешиванием кристаллов с растворителем, он может образоваться только путем охлаждения горячего насыщенного раствора. Поэтому такие растворы называют также переохлажденными. В них что-то мешает началу кристаллизации, например, раствор слишком вязкий или для роста кристаллов требуются большие зародыши, которых в растворе нет.

Легко переохлаждаются растворы тиосульфата натрия Na2S2O3.5H2O

Если осторожно нагреть кристаллы этого вещества примерно до 56°С, они «расплавятся». В действительности это не плавление, а растворение тиосульфата натрия в «собственной» кристаллизационной воде

С повышением температуры растворимость тиосульфата натрия, как и большинства других веществ, увеличивается, и при 56°С его кристаллизационной воды оказывается достаточно, чтобы растворить всю имеющуюся соль. Если теперь осторожно, избегая резких толчков, охладить сосуд, кристаллы не образуются и вещество останется жидким. Но если в переохлажденный раствор внести готовый зародыш – маленький кристаллик этого же вещества, то начнется быстрая кристаллизация. Интересно, что ее вызывает кристалл только этого вещества, а к постороннему раствор может быть совершенно безразличен. Поэтому если прикоснуться небольшим кристалликом тиосульфата к поверхности раствора, произойдет настоящее чудо: от кристаллика побежит фронт кристаллизации, который быстро дойдет до дна сосуда. Так что уже через несколько секунд жидкость полностью «затвердеет». Сосуд можно даже перевернуть – из него не выльется ни одной капли! Твердый тиосульфат можно снова расплавить в горячей воде и повторить все сначала.

Если пробирку с переохлажденным раствором тиосульфата поставить в ледяную воду, кристаллы будут расти медленнее, а сами будут крупнее. Кристаллизация пересыщенного раствора сопровождается его нагреванием – это выделяется тепловая энергия, полученная кристаллогидратом при его плавлении.

Тиосульфат натрия – не единственное вещество, образующее переохлажденный раствор, в котором можно вызвать быструю кристаллизацию. Подобным свойством обладает, например, и ацетат натрия CH3COONa (его легко получить действием уксусной кислоты на соду). С ацетатом натрия опытные лекторы демонстрируют такое «чудо»: на небольшую горку ацетата в блюдце они медленно льют пересыщенный раствор этой соли, который, соприкасаясь с кристаллами, немедленно кристаллизуется, образуя столбик твердой соли!

Кристаллы широко применяются в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты…

Рентгеноструктурные исследования кристаллов позволили установить строение многих молекул, в том числе и биологически активных – белков, нуклеиновых кислот.

Ограненные кристаллы драгоценных камней, в том числе выращенных искусственно, используются как украшения.

Илья Леенсон

Разновидности кристаллического кварца

Вне зависимости от того, какой у минерала цвет, кварц по определению прекрасен. А вот его ценность во многом зависит именно от оттенка:

  1. Горный хрусталь выгодно отличается от других видов полной прозрачностью и поразительным сиянием.
  2. Волосатик получил столь необычное название из-за поразительного внешнего вида. Полупрозрачный горный хрусталь содержит включения тонкоигольчатых кристаллов других самоцветов. Нити турмалина, рутила и прочих минералов напоминают тоненькие волоски.
  3. Раухтопаз, который иначе называют дымчатым кварцем, отличается прозрачностью и нестандартным оттенком. Расцветка может колебаться от сероватого-дымчатого до коричневого.
  4. Морион — минерал насыщенного черного цвета. Он бывает прозрачным или непрозрачным.
  5. Празем — зеленый кварц. Расцветка минерала обусловлена присутствием в составе мелких волокон актинолита или других минералов.
  6. Аметист является самым ценным представителем вида. Его относят к числу драгоценных камней. Часто встречаются образцы фиолетового оттенка фиолетово-розовые и сиренево-красные.
  7. Цитрин — это золотистый или лимонный кварц.
  8. Розовый кварц относится к разряду полудрагоценных камней. Он обладает нежным розовым оттенком.
  9. Раухцитрин совмещает окраску цитрина и раухтопаза. Он восхищает переливами, в которых прослеживается удивительная гармония коричневого и желтого оттенков.
  10. Аметрин является довольно редкой разновидностью. Его особенность заключается в удивительной расцветке, где тесно переплетены фиолетово-сиреневый и желтый цвета.
  11. Кошачий глаз — сероватый, розоватый или белый камень, обладающий поразительным эффектом светового отлива.

Удивительная красота всех видов кристаллического минерала очаровывает с первого взгляда. Вовсе не удивительно, что украшения из кварца пользуются неизменной популярностью у покупателей.

Применение жидких кристаллов[править | править код]

Сегментный и точечный ЖК-дисплей.

Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука.

Но самая многообещающая область применения жидкокристаллических веществ — информационная техника: от первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии по сравнению с телевизорами на электронно-лучевых трубках. В жидкокристаллических дисплеях используется переход Фредерикса, открытый ещё в 1927 году.

М. Г. Томилин предложил использовать жидкие кристаллы в двухступенчатых фотографических технологиях, для сохранения изображений, регистрация внешних воздействий при этом происходит в мезофазе, а хранение — в твердокристаллическом состоянии.

Жидкие кристаллы применяются в производстве «умного стекла», способного изменять коэффициент светопропускания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector