Гост 9012-59. металлы. метод измерения твердости по бринеллю (с изменениями n 1, 2, 3, 4, 5)

Шкалы твёрдости по Роквеллу

Циферблат прибора для проверки твёрдости по Роквеллу

Стандартами нормировано 11 шкал определения твердости по методу Роквелла (A; B; C; D; E; F; G; H; K; N; T), эти шкалы различаются типом индентора, испытательной нагрузкой и константами в формуле для вычисления твёрдости по результатам измерения.

Наиболее широко используются два три инденторов: сферический в виде шарика из карбида вольфрама или инструментальной закалённой стали диаметром 1/16 дюйма (1,5875 мм) или шарик диаметром 1/8 дюйма и конический алмазный наконечник с углом при скруглённой вершине 120°. Стандарты предусматривает в зависимости от шкалы 3 фиксированные нагрузки при вдавливании индентора — 60, 100 и 150 кгс.

Численная величина твёрдости определяется по формуле, коэффициенты в которой зависят от шкалы. Для снижения ошибки измерения от состояния испытуемой поверхности принимается относительная разница в глубине проникновения индентора при приложении основной и предварительной (10 кгс) нагрузки (см. рисунок).

Для обозначения твёрдости, определённой по методу Роквелла, используется сокращение HR, с 3-й буквой, указывающая на шкалу, по которой проводились испытания (HRA, HRB, HRC и т. д. до HRT). Например, HRC 64.

Наиболее широко используемые шкалы твёрдости по Роквеллу
Шкала Индентор Нагрузка, кгс
А Алмазный конус с углом 120° при вершине 60
В Шарик диаметром 1/16 дюйма из карбида вольфрама (или закалённой стали) 100
С Алмазный конус с углом 120° при вершине 150

Формулы для определения твёрдости

Чем твёрже материал, тем меньше будет глубина проникновения наконечника в него. Чтобы при большей твёрдости материала не получалось меньшее число твёрдости по Роквеллу, твёрдость определяют по формуле:

HR=N−H−hs{\displaystyle HR=N-{\frac {H-h}{s}}}
где разность H−h{\displaystyle H-h} — относительная глубина проникновения индентора под предварительной и основной нагрузками в мм,
N,{\displaystyle N,} s{\displaystyle s} — константы, зависящие от конкретной шкалы Роквелла (см. таблицу).

Таким образом, твердость по Роквеллу является безразмерной величиной.

Наиболее часто используемые шкалы Роквелла
Шкала Сокращённое обозначение Испытательная нагрузка Тип индентора Область применения N s
A HRA 60 кгс 120° алмазный сфероконический* Карбид вольфрама 100 0,002 мм
B HRB 100 кгс Диаметр 1⁄16 дюйма (1,588 мм)стальной, сферический Алюминиевые сплавы, бронза,мягкие стали 130 0,002 мм
C HRC 150 кгс 120° алмазный, сфероконический Твёрдые сталис HRB > 100 100 0,002 мм
D HRD 100 кгс 120° алмазный, сфероконический 100 0,002 мм
E HRE 100 кгс Диаметр 1⁄8 дюйма (3,175 мм)стальной, сферический 130 0,002 мм
F HRF 60 кгс Диаметр 1⁄16 дюйма (1,588 мм)стальной, сферический 130 0,002 мм
G HRG 150 кгс Диаметр 1⁄16 дюйма (1,588 мм)стальной, сферический 130 0,002 мм
*Радиус сферического скругления вершины конуса 0,2 мм

1. Методика проведения испытаний и расчета твердости

Этот метод относится к способам оценки твердости, базирующиеся на принципе вдавливания индентора (полированной закаленной стальной шарики). Испытание проводится следующим образом: сначала дают небольшое предварительная нагрузка для установки начального положения индентора на образце, затем добавляется основная нагрузка, образец выдерживают под действием нагрузки в течение 10-30с, измеряется глубина вдавливания, после чего основная нагрузка снимается. При определении твердости по методу Бринелля, в отличие от метода Роквелла, измерения проводят в упругого восстановления материала. Индентор вдавливают в поверхность испытуемого образца (толщиной не менее 4 мм) с регламентированным усилием.

В другом варианте усилия увеличивается до достижения регламентированной глубины внедрения.

Твердость по Бринеллю HB рассчитывается как «приложенная нагрузка», разделено на «площадь поверхности отпечатка»:

,

где — Приложенная нагрузка, кПа;

— Диаметр шарика, мм;

— Диаметр отпечатка, мм,

или по формуле:

,

где — Глубина вдавливания индентора.

Распространенные диаметры шарики — 10, 5, 2,5 и 1 мм и нагрузки 187,5 кгс, 250 кгс, 500 кгс, 1 000 кгс и 3 000 кгс. Для выбора диаметра шарика обычно используют следующее правило: диаметр отпечатка должен лежать в пределах 0,2-0,7 диаметра шарика. В методиках ISO и ASTM объединены метод с одним шариком и различными нагрузками и метод с применением различных шариков, а также дана формула вычисления твердости, не зависящей от нагрузки.

Твердость по шкале Бринелля выражают в кгс / мм ?.

Для определения твердости по методу Бринелля используют твердомеры, как автоматические, так и ручные.

История

Измерение твёрдости по относительной глубине проникновения индентора было предложено в 1908 году венским профессором Людвигом (Ludwig) в книге «Die Kegelprobe» (дословно «испытание конусом»).

Метод определения относительной глубины проникновения индентора, предложенный Хью и Стэнли Роквеллами исключал ошибки, связанные с механическим несовершенствами измерительной системы, такими, как люфты, поверхностные дефекты и загрязнения поверхности испытуемых материалов и деталей.

Твердомер Роквелла, прибор для определения относительной глубины проникновения, был изобретён уроженцами штата Коннектикут Хью М. Роквеллом (1890—1957 гг.) и Стэнли П. Роквеллом (1886—1940 гг.). Потребность в этом устройстве была вызвана необходимостью оперативного определения результатов термообработки обойм стальных шарикоподшипников. Метод Бринелля, изобретённый в 1900 году в Швеции, был медленным, неприменимым для закалённых сталей, и оставлял слишком большой отпечаток, чтобы считать этот метод методом неразрушающего контроля.

Патентную заявку на новое устройство они подали 15 июля 1914 года; после её рассмотрения был выдан патент № 1294171 от 11 февраля 1919 года.

Во время изобретения Хью и Стэнли Роквеллы (не были прямыми родственниками) работали в компании New Departure Manufacturing (Бристоль, Коннектикут). New Departure, бывшая крупным производителем шарикоподшипников, в 1916 году стала частью United Motors, а затем — корпорации General Motors.

После ухода из компании в Коннектикуте, Стэнли Роквелл переехал в Сиракьюс (штат Нью-Йорк) и 11 сентября 1919 года подал заявку на усовершенствование первоначального изобретения, которая была утверждена 18 ноября 1924 года. Новый прибор был также запатентован под № 1516207. В 1921 году Роквелл переехал в Западный Хартфорд, в Коннектикуте, где предложил дополнительные усовершенствования.

В 1920 году Стэнли Роквелл начал сотрудничество с производителем инструментов Чарльзом Вильсоном (Charles H. Wilson) из компании Wilson-Mauelen с целью коммерциализации изобретения и разработки стандартизированных испытательных машин.

Около 1923 года Стэнли Роквелл основал фирму по термообработке Stanley P. Rockwell company, которая существует до сих пор в Хартфорде, в Коннектикуте. Через несколько лет она, переименованная в Wilson Mechanical Instrument Company, сменила владельца. В 1993 году компанию приобрела корпорация Instron.

Методика проведения испытаний и расчёт твёрдости

Принципиальная схема

Отпечаток индентора на эталонном образце. Твёрдость 96.5 HBW 10/1000/10 (см. )

Метод Бринелля относится к методам вдавливания.

Испытание проводится следующим образом:

  • вначале образец подводят к индентору;
  • затем вдавливают индентор в образец с плавно нарастающей нагрузкой в течение 2‑8 секунд;
  • после достижения максимальной величины, нагрузка на индентор выдерживается в определённом интервале времени (для сталей, обычно, 10‑15 секунд);
  • затем снимают приложенную нагрузку, отводят образец от индентора и измеряют диаметр получившегося отпечатка.

В качестве инденторов используются шарики из твёрдого сплава диаметром 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала.

Исследуемые материалы делят на 5 основных групп:

1 — сталь, никелевые и титановые сплавы;
2 — чугун;
3 — медь и сплавы меди;
4 — лёгкие металлы и их сплавы;
5 — свинец, олово.

Кроме этого, вышеприведенные группы могут разделяться на подгруппы в зависимости от твёрдости образцов.

При выборе условий испытаний следят за тем, чтобы толщина образца, как минимум, в 8 раз превышала глубину вдавливания индентора

И ещё важно контролировать диаметр отпечатка, который должен находиться в пределах от 0.24·D до 0.6·D, где D — диаметр индентора (шарика).. Твёрдость по Бринеллю обозначается «HBW» и может рассчитываться двумя методами:

Твёрдость по Бринеллю обозначается «HBW» и может рассчитываться двумя методами:

  • метод восстановленного отпечатка;
  • метод невосстановленного отпечатка.

По методу восстановленного отпечатка твёрдость рассчитывается как отношение приложенной нагрузки к площади поверхности отпечатка:

HBW=,102FπD2(D−D2−d2){\displaystyle {\mbox{HBW}}={\frac {0,102F}{{\frac {\pi D}{2}}\left(D-{\sqrt {D^{2}-d^{2}}}\right)}}},

где:

  • F{\displaystyle F} — приложенная нагрузка, Н;
  • D{\displaystyle D} — диаметр шарика, мм;
  • d{\displaystyle d} — диаметр отпечатка, мм.

По методу невосстановленного отпечатка твёрдость определяется как отношение приложенной нагрузки к площади внедрённой в материал части индентора:

HBW=,102FπDh{\displaystyle {\mbox{HBW}}={\frac {0,102F}{\pi Dh}}},

где h{\displaystyle h} — глубина внедрения индентора, мм.

Нормативными документами определены:

  • диаметры индентора;
  • время вдавливания;
  • время выдержки под максимальной нагрузкой;
  • минимальная толщина образца;
  • минимальная и максимальная величины диагоналей отпечатка;
  • максимальные нагрузки;
  • группа исследуемого материала.

По ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.

Пример обозначения твёрдости по Бринеллю:

600 HBW 10/3000/20,

где:

  • 600 — значение твёрдости по Бринеллю, кгс/мм²;
  • HBW — символьное обозначение твёрдости по Бринеллю;
  • 10 — диаметр шарика в мм;
  • 3000 — приблизительное значение эквивалентной нагрузки в кгс (3000 кгс = 29 420 Н);
  • 20 — время действия нагрузки, с.

Для определения твёрдости по методу Бринелля используют различные твердомеры (например, твердомеры для металлов), как стационарные, так и переносные.

Методика проведения испытаний и расчёт твёрдости

Принципиальная схема

Отпечаток индентора на эталонном образце. Твёрдость 96.5 HBW 10/1000/10 (см. )

Метод Бринелля относится к методам вдавливания.

Испытание проводится следующим образом:

  • вначале образец подводят к индентору;
  • затем вдавливают индентор в образец с плавно нарастающей нагрузкой в течение 2‑8 секунд;
  • после достижения максимальной величины, нагрузка на индентор выдерживается в определённом интервале времени (для сталей, обычно, 10‑15 секунд);
  • затем снимают приложенную нагрузку, отводят образец от индентора и измеряют диаметр получившегося отпечатка.

В качестве инденторов используются шарики из твёрдого сплава диаметром 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала.

Исследуемые материалы делят на 5 основных групп:

1 — сталь, никелевые и титановые сплавы;
2 — чугун;
3 — медь и сплавы меди;
4 — лёгкие металлы и их сплавы;
5 — свинец, олово.

Кроме этого, вышеприведенные группы могут разделяться на подгруппы в зависимости от твёрдости образцов.

При выборе условий испытаний следят за тем, чтобы толщина образца, как минимум, в 8 раз превышала глубину вдавливания индентора

И ещё важно контролировать диаметр отпечатка, который должен находиться в пределах от 0.24·D до 0.6·D, где D — диаметр индентора (шарика).. Твёрдость по Бринеллю обозначается «HBW» и может рассчитываться двумя методами:

Твёрдость по Бринеллю обозначается «HBW» и может рассчитываться двумя методами:

  • метод восстановленного отпечатка;
  • метод невосстановленного отпечатка.

По методу восстановленного отпечатка твёрдость рассчитывается как отношение приложенной нагрузки к площади поверхности отпечатка:

HBW=,102FπD2(D−D2−d2){\displaystyle {\mbox{HBW}}={\frac {0,102F}{{\frac {\pi D}{2}}\left(D-{\sqrt {D^{2}-d^{2}}}\right)}}},

где:

  • F{\displaystyle F} — приложенная нагрузка, Н;
  • D{\displaystyle D} — диаметр шарика, мм;
  • d{\displaystyle d} — диаметр отпечатка, мм.

По методу невосстановленного отпечатка твёрдость определяется как отношение приложенной нагрузки к площади внедрённой в материал части индентора:

HBW=,102FπDh{\displaystyle {\mbox{HBW}}={\frac {0,102F}{\pi Dh}}},

где h{\displaystyle h} — глубина внедрения индентора, мм.

Нормативными документами определены:

  • диаметры индентора;
  • время вдавливания;
  • время выдержки под максимальной нагрузкой;
  • минимальная толщина образца;
  • минимальная и максимальная величины диагоналей отпечатка;
  • максимальные нагрузки;
  • группа исследуемого материала.

По ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.

Пример обозначения твёрдости по Бринеллю:

600 HBW 10/3000/20,

где:

  • 600 — значение твёрдости по Бринеллю, кгс/мм²;
  • HBW — символьное обозначение твёрдости по Бринеллю;
  • 10 — диаметр шарика в мм;
  • 3000 — приблизительное значение эквивалентной нагрузки в кгс (3000 кгс = 29 420 Н);
  • 20 — время действия нагрузки, с.

Для определения твёрдости по методу Бринелля используют различные твердомеры (например, твердомеры для металлов), как стационарные, так и переносные.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2 ),

  • гдеР – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:сплавы из железа — 30D 2 ;медь и ее сплавы — 10D 2 ;баббиты, свинцовые бронзы — 2,5D 2 .

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Математическая формула для расчета:HV=0.189*P/d 2 МПаHV=1,854*P/d 2 кгс/мм 2 Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, мм HB HRA HRC HRB
2,3 712 85,1 66,4
2,5 601 81,1 59,3
3,0 415 72,6 43,8
3,5 302 66,7 32,5
4,0 229 61,8 22 98,2
5,0 143 77,4
5,2 131 72,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.

Испытание на твердость – основной метод оценки качества термообработки изделия.

Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.

Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой. В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB. При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).

Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.

Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.

Примечания

  1. Kehl G. L. The Principles of Metallographic Laboratory Practice, 3rd Ed., McGraw-Hill Book Co., 1949, p. 229.
  2. H. M. Rockwell & S. P. Rockwell Hardness-Tester, US Patent 1294171, Feb 1919.
  3. S. P. Rockwell The Testing of Metals for Hardness // Transactions of the American Society for Steel Treating, Vol. II, № 11, Aug 1922, p. 1013—1033.
  4. S. P. Rockwell Hardness-Testing Machine, US Patent 1516207, Nov 1924.
  5. Lysaght V. E. Indentation Hardness Testing, Reinhold Publishing Corp., 1949, p. 57-62.
  6. ISO 6508-1:2005. Metallic materials. Rockwell hardness test. Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)
  7. Smith, William F. & Hashemi, Javad (2001), Foundations of Material Science and Engineering (4th ed.), McGraw-Hill, с. 229, ISBN 0-07-295358-6

Оценка механических свойств по испытаниям на твёрдость [ править | править код ]

Связь между результатами проверки на твёрдость по Роквеллу и прочностными характеристиками материалов исследовались такими учёными-материаловедами, как Н. Н. Давиденков, М. П. Марковец и др.

Используются методы определения предела текучести по результатам проверки на твёрдость вдавливанием. Такая связь была найдена, например, для высокохромистых нержавеющих сталей после различных режимов термообработки. Среднее отклонение результатов методов для конического алмазного индентора составляло всего +0,9 %.

Были также проведены исследования по нахождению связи между значениями твёрдости и другими прочностными характеристиками, определяемыми при растяжении, такими, как предел прочности (временное сопротивление), относительное сужение и истинное сопротивление разрушению.

В чем заключается сущность метода Роквелла?

Сущность метода определения твердости по Роквеллу заключается во внедрении индентора в испытуемый образец, c измерением глубины отпечатка во время испытания.

  • где:
  • Рпр– предварительная нагрузка;
  • Росн– основная нагрузка;
  • h0 – глубина вдавливания индентора при предварительной нагрузки Рпр;
  • h – глубина вдавливания индентора при основной нагрузки Росн;

Какой индентор используют для определения твердости по Роквеллу?

Для определения твердости используют твердосплавный шарик (диаметром 1,588 мм) или алмазный конус (120 градусов).

Как вычисляют твердость?

Твердость по Роквеллу (HR) вычисляют как разность между глубиной отпечатка при максимальных нагрузках и глубиной отпечатка при предварительной нагрузке.

Области применения по твердостям HRA, HRB и HRC?

Для измерения твердости по Роквеллу существуют 11 шкал, применяемых в зависимости от целевой задачи и отличающиеся друг от друга усилием и формой индентора. Наиболее распространенные шкалы – тип A, тип B и тип C.

Тип шкалы Вид индентора Усилие, кгс Обозначение твердости Область применения
Pпр Pпр+Pосн
A Алмазный конус с углом при вершине 120° 10 60 HRA Для особо твердых материалов: керамика, твердые и хрупкие материалы и покрытия, поверхности после химико-термической обработки
B Стальной закаленный шарик диаметром 1,588 мм 10 100 HRB Для относительно мягких материалов: пластичные материалов, тонкой фольги и покрытий
C Алмазный конус с углом при вершине 120° 10 150 HRC Твердые материалы после термической обработки

По какой формуле рассчитывается твердость алмазным наконечником?

При определении твердости алмазным наконечником (120 градусов) по шкале A и C применяют формулу:

где H-h-разность глубин внедрения индентора (в мм) после снятия основной нагрузки и до ее приложения.

По какой формуле рассчитывается твердость закаленным стальным шаровым индентором?

При определении твердости закаленным стальным шаровым индентором (диаметром 1,588 мм) по шкале B:

Про твердость алмаза ходят легенды. Здесь с ним не может сравниться ни одно из природных веществ на Земле. Вопреки широко распространенному мнению, основная часть алмазов используется в промышленном, а не ювелирном производстве. Благодаря своей кристаллической решетке и прочности, камень востребован в горнодобывающей и тяжелой промышленности. Его используют при изготовлении инструментов, способных вгрызаться в коренную породу Земли и резать другие твердые вещества.

Преимущества и недостатки метода

Каждый метод вычисления твердости поверхности обладает своими определенными достоинствами и недостатками. Принято считать, что испытание на твердость по Роквеллу и Бринеллю являются основными, так как позволяют получить наиболее точный результат.

К достоинствам метода измерения твердости по Роквеллу HRC можно отнести нижеприведенные моменты:

  1. Технология определяет возможность тестирования поверхностей с повышенной твердостью.
  2. При тестировании поверхность повреждается несущественно, что позволяет исследовать уже готовые изделия.
  3. Существенно упрощается процесс расчетов показателя твердости, так как нет необходимости в замере диаметра получаемого отпечатка после снятия прилагаемой нагрузки.
  4. На проведение измерений по Роквеллу уходит всего несколько секунд.

Однако есть и несколько существенных недостатков, которые также нужно учитывать:

  1. В сравнении с методом по Бринеллю, получаемый результат не так точен.
  2. Для повышения точности проводимых измерений следует тщательно подготовить поверхность.

Несмотря на то, что получаемые результаты могут иметь достаточно высокую погрешность, этот метод получил широкое распространение в машиностроительной и других отраслях промышленности, так как на тестирование уходит мало времени.

Показатель твердости зависит от достаточно большого количества моментов, к примеру, химического состава. Кроме этого, металлы могут улучшаться закалкой и другими видами термической обработки. Сегодня можно встретить довольно много методической литературы с таблицами, в которых указывается твердость для распространенных материалов. Принимаются эти значения зачастую при выполнении расчетов или проектировании.

На точность проводимых измерений может оказывать влияние:

  1. Толщина испытуемого образца. Согласно принятым нормам при проникновении алмазного наконечника на 0,2 мм толщина испытуемого образца должна быть не меньше 2 см. В противном случае, полученные данные будут считаться искаженными.
  2. Если один образец применяется для проведения нескольких тестов, то расстояние между отпечатками должно быть не менее трех их диаметров. Соблюдение этого правила также позволяет получить более точные результаты.
  3. Результаты на циферблате могут отличаться в зависимости от положения исследователя. Повторные тестирования должны проводиться с одной точки обзора, иначе полученные результаты могут отличаться.

В заключение отметим, что сегодня подобные исследования проводятся все реже. Это связано с тем, что при изготовлении заготовок достигают высокой точности химического состава и физико-механических свойств. Поэтому каждой марке металла соответствует определенный показатель твердости по Роквеллу. Измерения зачастую проводятся после выполнения химико-термической обработки, когда от соблюдения применяемой технологии зависит конечный результат.

Примечания

  1. Kehl G. L. The Principles of Metallographic Laboratory Practice, 3rd Ed., McGraw-Hill Book Co., 1949, p. 229.
  2. H. M. Rockwell & S. P. Rockwell Hardness-Tester, US Patent 1294171, Feb 1919.
  3. S. P. Rockwell The Testing of Metals for Hardness // Transactions of the American Society for Steel Treating, Vol. II, № 11, Aug 1922, p. 1013—1033.
  4. S. P. Rockwell Hardness-Testing Machine, US Patent 1516207, Nov 1924.
  5. Lysaght V. E. Indentation Hardness Testing, Reinhold Publishing Corp., 1949, p. 57-62.
  6. ISO 6508-1:2005. Metallic materials. Rockwell hardness test. Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)
  7. Smith, William F. & Hashemi, Javad (2001), Foundations of Material Science and Engineering (4th ed.), McGraw-Hill, с. 229, ISBN 0-07-295358-6
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector