Вес кабеля

Таблица веса меди в проводе ПВС.

Наименование провода

Вес меди, кг/км

Провод ПВС 2х0.5

8,90

Провод ПВС 2х0.75

13,35

Провод ПВС 2х1

17,80

Провод ПВС 2х1.5

26,70

Провод ПВС 2х2.5

44,50

Провод ПВС 2х4

71,20

Провод ПВС 2х6

106,80

Провод ПВС 3х0.5

13,35

Провод ПВС 3х0.75

20,03

Провод ПВС 3х1

26,70

Провод ПВС 3х1.5

40,05

Провод ПВС 3х2.5

66,75

Провод ПВС 3х4

106,80

Провод ПВС 3х6

160,20

Провод ПВС 4х0.5

17,80

Провод ПВС 4х0.75

26,70

Провод ПВС 4х1

35,60

Провод ПВС 4х1.5

53,40

Провод ПВС 4х2.5

89,00

Провод ПВС 4х4

142,40

Провод ПВС 4х6

213,60

Провод ПВС 5х0.5

22,25

Провод ПВС 5х0.75

33,38

Провод ПВС 5х1

44,50

Провод ПВС 5х1.5

66,75

Провод ПВС 5х2.5

111,25

Провод ПВС 5х4

178,00

Провод ПВС 5х6

267,00

Общие свойства

Не нужно путать сталь с железом, которое представляет собой твердый и относительно пластичный металл, имеет атомный диаметр 2,48 ангстрема, температуру плавления 1535 °C и температуру кипения 2740 °C. В свою очередь, углерод является неметаллом с атомным диаметром 1,54 ангстрема, мягкий и хрупкий в большинстве своих аллотропных модификаций (исключение составляет алмаз). Диффузия этого элемента в кристаллической структуре железа возможна благодаря разнице в их атомных диаметрах. В результате такой диффузии образуется этот материал.

Главным отличием железа от стали является процентное содержание углерода, которое было указано выше. Материал может иметь различную микроструктуру в зависимости от той или иной температуры. Она может находиться в следующих структурах (для большей информации посмотрите фазовую диаграмму железо-углерод):

  • перлит;
  • цементит;
  • феррит;
  • аустенит.

Материал сохраняет свойства железа в своем чистом состоянии, однако добавка углерода и других элементов, как металлов, так и неметаллов, улучшает ее физико-химические свойства.

Существует много видов стали в зависимости от добавляемых в нее элементов. Группу углеродных сталей образуют материалы, в которых углерод является единственной добавкой. Другие специальные материалы получают свои названия благодаря своим основным функциям и свойствам, которые определяются их структурой и добавленными дополнительными элементами, например, кремниевые, цементирующие, нержавеющие, структурные сплавы и так далее.

Как правило, все материалы с добавками объединяются под одним названием — специальные стали, которые отличаются от обычных углеродных сталей, а последние служат базовым материалом для изготовления специальных материалов. Такое разнообразие данного материала по его характеристикам и свойствам привело к тому, что сталь начали называть «сплав железа и другой субстанции, которая повышает его твердость».

Определение массы изделия

Все современные справочные материалы, ГОСТ и технические условия предприятий скорректированы в соответствии с международной классификацией.

Пользуясь справочными таблицами плотностей различных материалов, легко определить их массу. Это особенно актуально, когда предметы тяжёлые или отсутствуют соответствующие весы. Для этого требуется знать их геометрические параметры. Чаще всего узнать требуется массу предмета в форме цилиндра, трубы или параллелепипеда:

  1. Металлические прутки имеют форму цилиндра. Зная диаметр и длину, легко узнать массу. Масса равна плотности, умноженной на объём. Находим объём предмета. Он получается умножением площади сечения на длину. Площадь круга, зная диаметр, определить несложно. Диаметр в квадрате умножается на 3,14 (число пи), делится на 4.
  2. Массу трубы получаем аналогично. При нахождении площади берём разницу между внешним и внутренним диаметром сечения.
  3. Чтобы определить массу листа, блюма, сляба или прутка прямоугольного сечения, определяем объём, перемножая длину, высоту и толщину. Умножаем на плотность из справочника.

Читать также: Площадочный вибратор эв 98 технические характеристики

При таких вычислениях всегда допускается маленькая погрешность, ведь формы не идеальны. На практике ей можно пренебречь. Производители металлоизделий разработали специальные калькуляторы вычисления массы для пользователей. Достаточно ввести уникальные размеры в соответствующие окна и получить результат.

Разница между удельным весом и плотностью

УВ – что это такое?

Удельный вес – это есть отношение веса материи к его объему. В международной системе измерений СИ его измеряют как ньютон на кубический метр. Для решения определенных задач в физике УВ определяют следующим образом – насколько обследуемое вещество тяжелее, чем вода при температуре 4 градусов при условии того, что вещество и вода имеют равные объемы.

По большей части такое определение применяют в геологических и биологических исследованиях. Иногда, УВ, рассчитываемый по такой методике, называют относительной плотностью.

В чем отличия

Как уже отмечалось, эти два термина часто путают, но так как, вес напрямую зависим от расстояния между объектом и гравитационным источником, а масса не зависит от этого, поэтому термины УВ и плотность различаются между собой.Но необходимо принять во внимание то, что при некоторых условиях масса и вес могут совпадать. Измерить УВ в домашних условиях практически невозможно

Но даже на уровне школьной лаборатории такую операцию достаточно легко выполнить. Главное что бы лаборатория была оснащена весами с глубокими чашами.

Предмет необходимо взвесить при нормальных условиях. Полученное значение можно будет обозначить как Х1, после этого чашу с грузом помещают в воду. При этом в соответствии с законом Архимеда груз потеряет часть своего веса. При этом коромысло весов будет перекашиваться. Для достижения равновесия на другую чашу необходимо добавить груз. Его величину можно обозначить как Х2. В результате этих манипуляций будет получен УВ, который будет выражен как соотношение Х1 и Х2. Кроме вещества в твердом состоянии удельных можно измерить и для жидкостей, газов. При этом замеры можно выполнять в разных условиях, например, при повышенной температуре окружающей среды или пониженной температуры. Для получения искомых данных применяют такие приборы как пикнометр или ареометр.

Плотность сплавов цветных металлов

Наименование материала, марка Плотность ρ, кг/м3
АЛ1 2750
АЛ2 2650
АЛ3 2700
АЛ4 2650
АЛ5 2680
АЛ7 2800
АЛ8 2550
АЛ9 (АК7ч) 2660
АЛ11 (АК7Ц9) 2940
АЛ13 (АМг5К) 2600
АЛ19 (АМ5) 2780
АЛ21 2830
АЛ22 (АМг11) 2500
АЛ24 (АЦ4Мг) 2740
АЛ25 2720
Б88 7350
Б83 7380
Б83С 7400
БН 9500
Б16 9290
БС6 10050
БрАмц9-2Л 7600
БрАЖ9-4Л 7600
БрАМЖ10-4-4Л 7600
БрС30 9400
БрА5 8200
БрА7 7800
БрАмц9-2 7600
БрАЖ9-4 7600
БрАЖМц10-3-1,5 7500
БрАЖН10-4-4 7500
БрБ2 8200
БрБНТ1,7 8200
БрБНТ1,9 8200
БрКМц3-1 8400
БрКН1-3 8600
БрМц5 8600
БрОФ8-0,3 8600
БрОФ7-0,2 8600
БрОФ6,5-0,4 8700
БрОФ6,5-0,15 8800
БрОФ4-0,25 8900
БрОЦ4-3 8800
БрОЦС4-4-2,5 8900
БрОЦС4-4-4 9100
БрО3Ц7С5Н1 8840
БрО3Ц12С5 8690
БрО5Ц5С5 8840
БрО4Ц4С17 9000
БрО4Ц7С5 8700
БрБ2 8200
БрБНТ1,9 8200
БрБНТ1,7 8200
ЛЦ16К4 8300
ЛЦ14К3С3 8600
ЛЦ23А6Ж3Мц2 8500
ЛЦ30А3 8500
ЛЦ38Мц2С2 8500
ЛЦ40С 8500
ЛС40д 8500
ЛЦ37Мц2С2К 8500
ЛЦ40Мц3Ж 8500
Л96 8850
Л90 8780
Л85 8750
Л80 8660
Л70 8610
Л68 8600
Л63 8440
Л60 8400
ЛА77-2 8600
ЛАЖ60-1-1 8200
ЛАН59-3-2 8400
ЛЖМц59-1-1 8500
ЛН65-5 8600
ЛМц58-2 8400
ЛМцА57-3-1 8100
Л60, Л63 8400
ЛС59-1 8450
ЛЖС58-1-1 8450
ЛС63-3, ЛМц58-2 8500
ЛЖМц59-1-1 8500
ЛАЖ60-1-1 8200
Мл3 1780
Мл4 1830
Мл5 1810
Мл6 1760
Мл10 1780
Мл11 1800
Мл12 1810
МА1 1760
МА2 1780
МА2-1 1790
МА5 1820
МА8 1780
МА14 1800
Копель МНМц43-0,5 8900
Константан МНМц40-1,5 8900
Мельхиор МнЖМц30-1-1 8900
Сплав МНЖ5-1 8700
Мельхиор МН19 8900
Сплав ТБ МН16 9020
Нейзильбер МНЦ15-20 8700
Куниаль А МНА13-3 8500
Куниаль Б МНА6-1,5 8700
Манганин МНМц3-12 8400
НК 0,2 8900
НМц2,5 8900
НМц5 8800
Алюмель НМцАК2-2-1 8500
Хромель Т НХ9,5 8700
Монель НМЖМц28-2,5-1,5 8800
ЦАМ 9-1,5Л 6200
ЦАМ 9-1,5 6200
ЦАМ 10-5Л 6300
ЦАМ 10-5 6300

Технические показатели сплавов металлов

Наиболее распространенными сплавами на основе меди считаются латунь и бронза. Их состав формируется также из других элементов:

Все сплавы различаются между собой структурой. Наличие олова в составе позволяет делать бронзовые сплавы отменного качества. В более дешевые сплавы входит никель либо цинк. Производимые материалы на основе Cuprum обладают следующими характеристиками:

  • высокая пластичность и износостойкость;
  • электропроводность;
  • устойчивость к агрессивной среде;
  • низкий коэффициент трения.

Сплавы на основе меди находят широкое применение в промышленном производстве. Из них производят посуду, ювелирные украшения, электропровода и системы отопления. Материалы с Cuprum часто используют для декорирования фасадной части домов, изготовления композиций. Высокая устойчивость и пластичность являются основными качествами для применения материала.

Плотность материала – это физическая величина определяющая отношения массы материала к занимаемому объему. Единицей измерения плотности в системе СИ принята размерность кг/м 3 .

Величины усредненные, не являются эталонными, величины указанных плотностей варьируются от среды и условий измерения.

Одним из наиболее распространенных цветных металлов, используемых в промышленности, является медь, ее название на латинском Cuprum, в честь острова Кипра, где ее добывали греки много тысяч лет назад. Это один из семи металлов, которые были известны еще в глубокой древности, из него делали украшения, посуду, деньги, орудия. Историками даже назван период (с IV по III тысячелетие до нашей эры) Медным Веком. Д. И. Менделеев поставил этот металл на 29-е место в своей таблице, после водорода, поскольку медь не вытесняет его из кислотной среды. Медь — цветной металл, который имеет уникальные физические, механический, химические свойства. Плотность меди в кг м³ является одной из важнейших характеристик, с ее помощью определяется вес будущего изделия.

ГОСТ 495-92

Все изделия стальной промышленности изготовляются согласно законам и стандартам установленных государством и соответствуют всем нужным технологиям для производства качественного металла. Марка стали. Основой определения марки стали состоит химический состав. Каждый металл имеет свою уникальную марку. И даже лист медный твердый и лист медный мягкий содержат отличия.

Заказать медный лист

и проконсультироваться по металлопрокату Вы можете позвонив по телефонам, указанным в верху и внизу сайта, звоните!

Наиболее типичный вариант выбора меди:

  • Фактура поверхности и производитель
  • Состояние
  • Толщина листа
  • Ширина листа

Как правило на начальном этапе архитектор и заказчик выбирают внешний вид медной кровли — фактуру поверхности, от этого параметра зависит и выбор производителя. Образование патины в разной местности различно, это обусловлено разностью химической реакции (воздействия окружающей среды на медную поверхность), поэтому наблюдается отличие внешнего вида медных поверхностей. Поэтому каждый производитель приближает свою продукцию к естественной для данного региона (страны). Помимо этого существуют технологические и качественные отличия, которые необходимо обязательно учитывать. Данный этап один из самых важных при выборе меди, особенно при выборе меди для фасада.

Ширина, толщина и твердость меди принимается в зависимости от условий, описанных ниже в соответствующих разделах.

Разница между удельным весом и плотностью

УВ – что это такое?

Удельный вес – это есть отношение веса материи к его объему. В международной системе измерений СИ его измеряют как ньютон на кубический метр. Для решения определенных задач в физике УВ определяют следующим образом – насколько обследуемое вещество тяжелее, чем вода при температуре 4 градусов при условии того, что вещество и вода имеют равные объемы.

По большей части такое определение применяют в геологических и биологических исследованиях. Иногда, УВ, рассчитываемый по такой методике, называют относительной плотностью.

В чем отличия

Как уже отмечалось, эти два термина часто путают, но так как, вес напрямую зависим от расстояния между объектом и гравитационным источником, а масса не зависит от этого, поэтому термины УВ и плотность различаются между собой

Но необходимо принять во внимание то, что при некоторых условиях масса и вес могут совпадать. Измерить УВ в домашних условиях практически невозможно

Но даже на уровне школьной лаборатории такую операцию достаточно легко выполнить. Главное что бы лаборатория была оснащена весами с глубокими чашами.

Предмет необходимо взвесить при нормальных условиях. Полученное значение можно будет обозначить как Х1, после этого чашу с грузом помещают в воду. При этом в соответствии с законом Архимеда груз потеряет часть своего веса. При этом коромысло весов будет перекашиваться. Для достижения равновесия на другую чашу необходимо добавить груз. Его величину можно обозначить как Х2. В результате этих манипуляций будет получен УВ, который будет выражен как соотношение Х1 и Х2. Кроме вещества в твердом состоянии удельных можно измерить и для жидкостей, газов. При этом замеры можно выполнять в разных условиях, например, при повышенной температуре окружающей среды или пониженной температуры. Для получения искомых данных применяют такие приборы как пикнометр или ареометр.

Толщина листа

Стандартные толщины листов кровельной меди для изготовления рядовых картин находятся в пределах 0,6 — 1 мм.

Теоретическая масса 1 м2 медного листа

Вес 1 м2 медного листа можно вычислить по формуле

Вес (кг) = толщина листа (мм) х плотность меди (г/см3), где плотность меди Ро — постоянная величина = 8,9 г/см3

Вес листа меди толщиной 2 мм = 2 х 8,9 = 17,8 кг. Толщина медного листа должна выбираться в зависимости от конструктивных особенностей

Особенно это важно при изготовлении кассет с размерами более 1000 мм, в таких случаях необходимо прибегать к помощи проектировщиков, так как без специальных знаний выбор толщины при таких размерах чреват неудачными последствиями — возможно образование недопустимых деформаций, разрывов меди или чрезмерная масса кассет из-за большой толщины. Если отсутствуют какие-либо конструктивные особенности толщину меди можно выбрать исходя из интенсивности коррозии для конкретной местности, при расчете не принимать слой меди менее 0,3 мм (т.е

не считать, что медь будет служить до слоя в 0 мм).

Интенсивность коррозии зависит о степени воздействия окружающей среды на медь и при воздействии химических элементов таких как кислоты может увеличиваться на порядки.

Наиболее распространенные толщины медных листов, чаще всего применяемых в России — 0,6 мм. Использование больших толщин целесообразно для особо ответственных узлов и объектов со сроком служ- бы более 100 лет. В большей степени использование меди 0,8 мм и более связанно с традиционной приверженностью, так как более ранние технологии производства не обеспечивали необходимые свойства меди при меньших толщинах в связи с чем применяли медь большей толщины, как правило 1 мм.

При максимальном пределе нормальной городской коррозии меди 2,2 мк (микрона 0,000001 м) в год. Теоретический срок службы медного листа толщиной 0,6 мм до слоя 0,3 мм равен 136 лет.

Свойства

Медь — это цветной металл красноватого цвета с розовым отливом, наделенный высокой плотностью. В природе насчитывается более 170 видов минералов, имеющих в своем составе Cuprum. Только из 17 ведется промышленная добыча этого элемента. Основная масса этого химического элемента содержится в составе рудных металлов:

  • халькозина — до 80%;
  • бронита — до 65%;
  • ковелина — до 64%.

Из этих минералов осуществляется обогащение меди и ее выплавка. Высокая теплопроводность и электропроводность являются отличительными свойствами цветного металла. Он начинает плавиться при температуре 1063оС, а закипает при 2600оС. Марка Cuprum будет зависеть от способа производства. Металл бывает:

  • холоднотянутый;
  • прокатный;
  • литой.

Для каждого типа есть свои специальные параметрические расчеты, характеризующие степень сопротивления сдвигу, деформацию под воздействием нагрузок и сжатия, а также показатель упругости при растяжении материала.

Цветной металл активно окисляется в процессе нагревания. При температуре 385оС формируется оксид меди. Ее содержание снижает теплопроводность и электропроводность других металлов. При взаимодействии с влагой металл образует куприт, с кислой средой — купорос.

Удельная плотность меди

Благодаря своим свойствам этот химический элемент активно используется в производстве электрических и электронных систем и многих других изделий другого назначения. Важнейшим свойством является его плотность в 1 кг на м3, поскольку с помощью этого показателя определяется вес производимого изделия. Плотность показывает отношение массы к общему объему.

Самой распространенной системой измерения единиц плотности является 1 килограмм на м3. Этот показатель для меди равняется 8,93 кг/м3. В жидком виде плотность будет на уровне 8,0 г/см3. Общий показатель плотности может меняться в зависимости от марки металла, имеющего различные примеси. Для этого используется удельный вес вещества

Он является очень важной характеристикой, когда речь идет о производстве материалов, в составе которых есть медь. Удельный вес характеризует отношение массы меди в общем объеме сплава

Удельный вес меди будет равняться 8,94 г/см3. Параметры удельной плотности и веса у меди совпадают, однако такое совпадение не характерно для других металлов. Удельная масса очень важна не только при производстве изделий с ее содержанием, но и при переработке лома. Существует много методик, с помощью которых можно рационально подобрать материалы для формирования изделий. В международных системах СИ параметр удельного веса выражается в ньютонах на 1 единицу объема.

Очень важно все расчеты производить в стадии проектирования устройств и механизмов. Удельная плотность и вес являются разными значениями, но они обязательно используются для определения массы заготовок для различных деталей, в составе которых есть Cuprum

Если сравнить плотность меди и алюминия, мы увидим большую разницу. У алюминия этот показатель составляет 2698,72 кг/м3 в состоянии при комнатной температуре. Однако с повышением температуры параметры становятся другими. При переходе алюминия в жидкое состояние при нагревании плотность у него будет в пределах 2,55−2,34 г/см3. Показатель всегда зависит от содержания легирующих элементов в алюминиевых сплавах.

5 Применение сплавов

Пожалуй, трудно отыскать производственную отрасль, которая бы не использовала изделия из меди или ее сплавов. В чистом виде такой металл, как медь, задействован в электротехнических коммуникациях. Электрическая проводка, электродвигатели и кабельные изделия невозможно представить без участия меди.

Медное кабельное изделие

Трубопроводы, вакуумные машины, теплообменные камеры на 1/3 состоят из меди.

Сплавы благодаря их выверенным свойствам применяют в автомобильной промышленности и сельскохозяйственном машиностроении. Высокая устойчивость к коррозии позволяет медным сплавам участвовать в изготовлении химической аппаратуры, а сплав меди со свинцом используется в производстве сверхпроводниковой техники.

Изделия со сложным узором требуют вязких и пластичных сплавов, например, сплав серебра. Этим запросам отвечает мягкая медь, из которой можно формировать любые шнуры и элементы. Проволоку легко гнуть и паять вместе с такими элементами, как золото и серебро.

Таблица веса меди в кабели силовом ВВГ

Наименование кабеля Вес меди, кг/км
Кабель ВВГ 2х1.5 21,36
Кабель ВВГ 2х2.5 44,50
Кабель ВВГ 2х4 71,20
Кабель ВВГ 2х6 106,80
Кабель ВВГ 2х10 178,00
Кабель ВВГ 3х1.5 40,05
Кабель BBГ 3х2.5 66,75
Кабель ВВГ 3х4 106,80
Кабель ВВГ 3х6 160,20
Кабель ВВГ 3х10 267,00
Кабель ВВГ 4х1.5 53,40
Кабель ВВГ 4х2.5 89,00
Кабель ВВГ 4х4 142,40
Кабель ВВГ 4х6 213,60
Кабель ВВГ 4х10 356,00
Кабель ВВГ 4х16 569,60
Кабель ВВГ 4х25 890,00
Кабель ВВГ 4х35 1 246,00
Кабель ВВГ 4х50 1 780,00
Кабель ВВГ 5х1.5 66,75
Кабель ВВГ 5х2.5 111,25
Кабель ВВГ 5х4 178,00
Кабель ВВГ 5х6 267,00
Кабель ВВГ 5х10 445,00
Кабель ВВГ 5х16 712,00
Кабель ВВГ 5х25 1 112,50
Кабель ВВГ 5х35 1 557,50
Кабель ВВГ 5х50 2 225,00

Наименование кабеля Вес алюминия, кг/км

Кабель АВВГ 2х2.5 13,50

Кабель АВВГ 2х4 21,60

Кабель АВВГ 2х6 32,40

Кабель АВВГ 2х10 54,00

Кабель АВВГ 2х16 86,40

Кабель АВВГ 3х2.5 20,25

Кабель АВВГ 3х4 32,40

Кабель АВВГ 3х6 48,60

Кабель АВВГ 3х10 81,00

Кабель АВВГ 3х16 129,60

Кабель АВВГ 3х4+1х2.5 39,15

Кабель АВВГ 3х6+1х4 59,40

Кабель АВВГ 3х10+1х6 97,20

Кабель АВВГ 3х16+1х10 156,60

Кабель АВВГ 3х25+1х16 47,25

Кабель АВВГ 3х35+1х16 326,70

Кабель АВВГ 3х50+1х25 472,50

Кабель АВВГ 3х70+1х35 661,50

Кабель АВВГ 3х95+1х50 904,50

Кабель АВВГ 3х120+1х70 1 161,00

Кабель АВВГ 3х150+1х70 1 404,00

Кабель АВВГ 3х185+1х95 1 755,00

Кабель АВВГ 3х240+1х120 2 268,00

Кабель АВВГ 4х2.5 27,00

Кабель АВВГ 4х4 43,20

Кабель АВВГ 4х6 64,80

Кабель АВВГ 4х10 108,00

Кабель АВВГ 4х16 172,80

Кабель АВВГ 4х25 270,00

Кабель АВВГ 4х35 378,00

Кабель АВВГ 4х50 540,00

Кабель АВВГ 4х70 756,00

Кабель АВВГ 4х95 1 026,00

Кабель АВВГ 4х120 1 296,00

Кабель АВВГ 4х150 1 620,00

Кабель АВВГ 4х185 1 998,00

Кабель АВВГ 4х240 2 592,00

Наименование провода Вес меди, кг/км

Провод ПВС 2х0.5 8,90

Провод ПВС 2х0.75 13,35

Провод ПВС 2х1 17,80

Провод ПВС 2х1.5 26,70

Провод ПВС 2х2.5 44,50

Провод ПВС 2х4 71,20

Провод ПВС 2х6 106,80

Провод ПВС 3х0.5 13,35

Провод ПВС 3х0.75 20,03

Провод ПВС 3х1 26,70

Провод ПВС 3х1.5 40,05

Провод ПВС 3х2.5 66,75

Провод ПВС 3х4 106,80

Провод ПВС 3х6 160,20

Провод ПВС 4х0.5 17,80

Провод ПВС 4х0.75 26,70

Провод ПВС 4х1 35,60

Провод ПВС 4х1.5 53,40

Провод ПВС 4х2.5 89,00

Провод ПВС 4х4 142,40

Провод ПВС 4х6 213,60

Провод ПВС 5х0.5 22,25

Провод ПВС 5х0.75 33,38

Провод ПВС 5х1 44,50

Провод ПВС 5х1.5 66,75

Провод ПВС 5х2.5 111,25

Провод ПВС 5х4 178,00

Провод ПВС 5х6 267,00

Наименование провода Вес меди, кг/км

Провод ШВВП 2х0.5 8,90

Провод ШВВП 2х0.75 13,35

Провод ШВВП 2х1 17,80

Провод ШВВП 2х1.5 26,70

Провод ШВВП 2х2.5 44,50

Провод ШВВП 2х4 71,20

Провод ШВВП 2х6 106,80

Провод ШВВП 3х0.5 13,35

Провод ШВВП 3х0.75 20,03

Провод ШВВП 3х1 26,70

Провод ШВВП 3х1.5 40,05

Провод ШВВП 3х2.5 66,75

Провод ШВВП 3х4 106,80

Провод ШВВП 3х6 160,20

Наименование провода Вес меди, кг/км

Провод ШВП 2х0,2 3,56

Провод ШВП 2х0,35 6,23

Провод ШВП 2х0,5 8,90

Провод ШВП 2х0,75 13,35

Провод ШВП 2х1,0 17,80

Провод ШВП 2х1,5 26,70

Выводы

  • Удельный вес — величина, которая является отношением веса к объёму и измеряется в кг/куб. м. Также может быть упомянута в некоторых источниках, как плотность.
  • Показатели удельного веса могут быть использованы для более лучшей их обработки, что впоследствии может повлиять на качество конечного изделия.
  • Можно упомянуть о том, что данная величина металлов также может измеряться и в других единицах измерения. Приведённые в статье и в таблицах показатели, выраженные в кг/куб.см, очень часто используются в отечественных источниках и справочниках, но также можно наткнуться на другую единицу измерения, тоже довольно широко используемую для обозначения удельного веса. Это г/куб. м. Если вдруг пользователь наткнулся на данные, выраженные в данной единице измерения, но ему легче ориентироваться в показателях кг/куб.м, то расстраиваться не стоит. Следует просто умножить показатель в г/куб.см на 1000.
  • С помощью значений, приведённых в таблицах, можно с лёгкостью узнать вес имеющейся детали. Для того чтобы вычислить массу детали, нужно лишь вычислить её объём. Это делается для того, чтобы его впоследствии умножить на плотность материала, из которого была изготовлена деталь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector