Искусственные и натуральные ткани

Достоинства и недостатки материала

Ацетатные материалы часто используются для пошива одежды. Они имеют немало достоинств:

  1. Легкость производства. Создать ацетатное волокно просто. Это возможно даже в условиях обычного урока химии.
  2. Эластичность. Материал хорошо растягивается. Одежда из него красиво садится по телу, подчеркивая достоинства.
  3. Низкая влагопроницаемость. Ткань из чистого ацетата пропускает воду в минимальных количествах. Она быстро сохнет.
  4. Простота ухода. Материя практически не мнется. Обладает грязеотталкивающими свойствами, легко отстирывается.
  5. Хорошо драпируется. Из материала шьют одежду интересных дизайнов.
  6. Обилие оттенков. Это могут быть как однотонные цветные полотна, так и принтованные.
  7. Невысокая стоимость. Материал стоит дешевле даже, чем некоторые синтетические ткани.
  8. Низкая теплопроводность. Изделия из ацетатного волокна защищают как от жары, так и от холода.

Несмотря на обширный список достоинств, полотно имеет ряд недостатков:

  1. Небольшой срок службы. При частых стирках и глажках материя изнашивается. Постепенно она истончается, выцветает, покрывается катышками.
  2. Усадка. В большинстве случаев ткань садится при стирке. Иногда полотно обрабатывают средствами или смешивают с волокнами, нивелирующими недостатки.
  3. Способность накапливать статическое электричество. Ацетатная материя электризуется, притягивает пыль.
  4. Низкая гигроскопичность. Это одновременно и достоинство, и недостаток. Из-за этого свойства материал не впитывает пот, поэтому при физической активности или в жаркие дни в нем находиться некомфортно.
  5. Низкая прочность. Ткань легко рвется, расходится по шву.
  6. Низкая устойчивость к химии. Ткань растворяется в ацетоне, разрушается при контакте с кислотой или щелочью.
  7. Нестойкость цвета. Оттенок становится более бледным при длительном воздействии ультрафиолета. При контакте с потом образуются бледные пятна.

Гидратцеллюлозные искусственные волокна

Сюда относятся вискоза, лиоцелл, а также медно-аммиачные волокна.

Вискозные ткани изготавливаются исходя из их назначения. Им можно придать внешний вид хлопка, льна, шерсти или шелка. Кроме того, вискоза применяется для прядения вискозных неволокнистых изделий (целлюлозной пленки, целлофана), а также для производства искусственной кожи (кирзы). Вискоза обладает некоторыми достоинствами по сравнению с традиционными натуральными тканями. Так, вискоза лучше впитывает влагу, чем хлопок. Изделия из вискозы обладают приятным шелковистым блеском, при этом легко окрашиваются и обладают высокой светостойкостью (в отличие от шелка). Из недостатков необходимо назвать сильную сминаемость, высокую степень усадки и невысокую прочность (особенно во влажном состоянии). Поэтому стирать вискозу необходимо в щадящем режиме. Отжимать лучше вручную и не сильно, либо вообще не отжимать, а сразу вешать сушиться. Гладить ее рекомендуется в таком же режиме, как и шелк.

Лиоцелл также изготавливается из целлюлозных волокон. Лиоцелл выпускается под различными коммерческими названиями: Tencel, Орцел. Ткани из лиоцелла обладают следующими преимуществами: они приятные на ощупь, прочные, гигиеничные и экологически чистые. Кроме того, они эластичнее и гигроскопичнее хлопка.

Медно-аммиачное волокно вырабатывается из хлопковой целлюлозы. Имеет ограниченное применение в силу больших производственных затрат. Применяется в основном при производстве трикотажа, а в смеси с шерстью – при изготовлении тканей и ковров. В целом свойства медно-аммиачных волокон близки к вискозным. Но их прочность, упругость и эластичность немного выше.

Формование волокон

Процесс формования волокон состоит из следующих этапов:

  • продавливание прядильного раствора через отверстия фильер,
  • затвердевание вытекающих струек,
  • наматывание полученных нитей на приемные устройства.

Прядильный раствор подаётся на прядильную машину для формования волокон. Рабочими органами, непосредственно осуществляющими процесс формования химических волокон на прядильных машинах, являются фильеры. Изготавливаются фильеры из тугоплавких металлов – платины, нержавеющей стали и др. – в форме цилиндрического колпачка или диска с отверстиями.

В зависимости от назначения и свойств формуемого волокна количество отверстий в фильере, их диаметр и форма могут быть различными (круглые, квадратные, в виде звездочек, треугольников и т.п.). При использовании фильер с отверстиями фигурного сечения получают профилированные нити с различной конфигурацией поперечного сечения или же с внутренними каналами. Для формирования бикомпонентных (из двух и более полимеров) нитей отверстия фильер разделены перегородкой на несколько (две или более) частей, к каждой из которых подаётся свой прядильный раствор.

При формировании комплексных нитей используют фильеры с небольшим числом отверстий: от 12 до 100. Сформованные из одной фильеры элементарные нити соединяются в одну комплексную (филаментную) нить и наматываются на бобину. При получении штапельных волокон применяют фильеры с количеством отверстий в несколько десятков тысяч. Собранные вместе с нескольких фильер нити образуют жгут, который затем разрезается на штапельные волокна определенной длины.

Прядильный раствор дозировано продавливается через отверстия фильер. Вытекающие струйки попадают в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от среды, в которой происходит затвердевание полимера, различают мокрый и сухой способы формования.

При формовании волокон из раствора полимера в нелетучем растворителе (например, вискозных, медно-аммиачных, поливинилспиртовых волокон) нити затвердевают, попадая в осадительную ванну, где происходит их химическое или физико-химическое взаимодействие со специальным раствором, содержащим различные реагенты. Это «мокрый» способ формования (Рис 2а).

Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных и триацетатных волокон), средой затвердевания является горячий воздух, в котором растворитель испаряется. Это «сухой» способ формования (Рис 2б).

При формовании из расплава полимера (например, полиамидных, полиэфирных, полиолефиновых волокон) средой, вызывающей затвердевание полимера, служит холодный воздух или инертный газ (Рис 2в).

Скорость формования зависит от толщины и назначения волокон, а также от метода формования.

Прядильный раствор в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается, этот процесс называется фильерная вытяжка.

Химические волокна и нити непосредственно после формования не могут быть использованы для производства текстильных материалов. Они требуют дополнительной обработки.

В процессе формования образуется первичная структура нити. В растворе или расплаве макромолекулы имеют сильно изогнутую форму. Так как при формовании степень вытягивания нити невелика, то макромолекулы в нити расположены с малой долью распрямленности и ориентации вдоль оси нити. Для распрямления и переориентации макромолекул в осевом направлении нити выполняется пластификационная вытяжка, в результате которой ослабляются межмолекулярные связи, и образуется более упорядоченная структура нити. Вытягивание приводит к увеличению прочности и улучшению текстильных свойств нити.

Но в результате большой распрямленности макромолекул нити становятся менее растяжимыми. Такие волокна и изделия из них подвержены последующей усадке во время сухих и мокрых обработок при повышенных температурах. Поэтому возникает необходимость подвергнуть нити термофиксации тепловой обработке в натянутом состоянии. В результате термофиксации происходит частичная усадка нитей из-за приобретения макромолекулами изогнутой формы при сохранении их ориентации. Форма пряжи стабилизируется, последующая усадка, как самих волокон, так и изделий из них во время ВТО снижается.

Волокна животного происхождения

Козья, овечья, верблюжья и другая шерсть, а также натуральный шелк являются животными волокнами, состоящими из трех слоев: наружного чешуйчатого, основного коркового слоя и сердцевинного, который находится в центре нити.

Существует 4 типа шерстяных волокон:

  • извитое тонкое — пух;
  • промежуточный волос – среднее между пухом и остью;
  • грубое и мало извитое — ость;
  • короткое ломкое волокно – мертвый волос.

В зависимости от типов нити различают и виды шерсти: от тонкой, которая идет на изготовление шерстяных изделий высокого качества, до грубой, используемой для выработки сукна и войлока. Шерсть способна сохранять тепло и гигроскопична. При ее горении появляется запах жженого пера.

Самое легкое природное волокно – шелк. Получают его из кокона гусеницы шелкопряда.

Два белка — фиброин и серицин — входят в состав коконной нити. Натуральному шелку присущи мягкость, гладкость, высокая гигроскопичность, малая сминаемость. Недостатками являются высокая усадка крученой нити и низкая термостойкость. Шелк является ценнейшим сырьем для изготовления легкой летней одежды.

Из Википедии — свободной энциклопедии

Волокно́ — тонкая непряденая нить растительного, животного или минерального происхождения.

В астрономии:

Галактическое волокно, или галактическая нить — самая большая из известных космических структур во Вселенной, представляющая собой нитевидную структуру и формирующая границы между большими пустотами (войдами).

В медицине:

  • Мышечное волокно — составляющие основную часть мышечной ткани клетки.
  • Нервное волокно — отросток нейрона, покрытый глиальной оболочкой.

В производстве:

  • Текстильное волокно — волокно, использующееся в текстильной промышленности для изготовления текстильных материалов, например, ткани, ниток или искусственного меха.

    • Штапельное волокно — элементарное текстильное волокно ограниченной длины, как искусственного, так и естественного происхождения, используемое в текстильной промышленности для выработки как пряжи, так и нетканых материалов.
    • Природные (натуральные) текстильные волокна:

      Бамбуковое волокно — регенерированное целлюлозное волокно, изготовленное из мякоти бамбука.

    • Химические волокна — волокна, получаемые из природных и синтетических органических полимеров.

      • Акриловое волокно — синтетическое волокно, получаемое путём формования из растворов полиакрилонитрила или его производных.
      • Ацетатное волокно — искусственные волокна, получаемые из ацетилцеллюлозы.
      • Вискозное волокно — искусственное волокно, получаемое переработкой природной целлюлозы.
      • Микроволокно — ткань, произведённая из волокон полиэфира, полиамида или других полимеров.
      • Модакриловое волокно — волокно, созданное на основе сополимеров акрилонитрила с винилхлоридом или винилиденхлоридом, в некоторых случаях с третьим сомономером.
      • Полиамидное волокно — текстильное и конструкционное волокно, изготовленное из пластмассы на основе линейных синтетических высокомолекулярных соединений, содержащих в основной цепи амидные группы.
      • Полиуретановое волокно — синтетическая нить, получаемая на основе полиуретановых каучуков.
      • Полиэфирное волокно — синтетическое волокно, формируемое из расплава полиэтилентерефталата или его производных.
      • Стекловолокно — волокно или комплексная нить, формуемые из стекла.
      • Углеродное волокно — материал, состоящий из тонких нитей, образованных преимущественно атомами углерода.
  • Оптическое волокно — нить из прозрачного материала, используемая для переноса света внутри себя.

    •  — оптическое волокно, легированное специальными примесями.
    • Оптическое волокно с двойным покрытием — трёхслойное оптоволокно с различными показателями преломления света у всех трёх слоёв.
    • Субдлинноволновое оптическое волокно — участок оптического волокна с внешним диаметром менее длины волны проходящего через него света.
    • Тёмное волокно — резервные волокна оптического кабеля, используемые в случае выхода из строя основных волокон.
    • Флюоридное волокно — волокно из стёкол на основе фторидов тяжёлых металлов.
    • Фотонно-кристаллическое оптическое волокно — класс оптических волокон, оболочка которых имеет структуру двумерного фотонного кристалла.
    • Одномодовое оптическое волокно — волокно с оптическими параметрами, позволяющими распространяться в нём только одному лучу (моде).
    • Многомодовое волокно — волокно, в которое лучи (моды) входят под разными углами и распространяются по разным путям.
  • Конструкционные волокна:

    • Древесное волокно
    • Базальтовое волокно — материал, получаемый из природных минералов путём их расплава и последующего преобразования в волокно без использования химических добавок.
    • Борное волокно — конструкционное волокно, получаемое осаждением бора на непрерывную тонкую нить или проволоку.
    • Карбидкремниевое волокно — конструкционное волокно, состоящее из нанокристаллического карбида кремния.
    • Фиброволокно — тончайшее синтетическое волокно, получаемое из гранул высокомодульного термопластичного полимера, входящее в состав строительных композитных материалов.

В диетологии:

Пищевые волокна — компоненты пищи, не перевариваемые пищеварительными ферментами организма человека.

Природные волокна

Волокна естественной природы можно разделить на три группы:

  • растительные;
  • животные;
  • минеральные.

Наиболее известные волокнистые растительные материалы – хлопок и лен. Тончайшие хлопковые волокна покрывают семена хлопчатника, их собирают путем обработки семян на хлопкоочистительных заводах. Волокна хлопка представляют собой тонкостенные полые трубочки различной толщины и длины. Льняное волокно получают из стеблей льна путем их замачивания и последующей обработки. Льняные нити имеют слоистое строение, они прочнее хлопковых и обладают большей гигроскопичностью.

Волокнистые материалы животного происхождения – это шерсть и шелк. Шерстяные нити получают из волосяного покрова разнообразных животных. Чаще всего это овцы и козы, также используют шерсть кроликов, верблюдов, альпака и других. В шерсти животных встречаются извитые волокна нескольких типов – мягкий пух, более плотные переходные волосы и жесткие ости. Натуральные шелковые волокна – это продукт жизнедеятельности шелковичных червей, их добывают из коконов тутовых шелкопрядов. Длина нити из одного кокона может достигать 1 километра.

Самый известный минеральный волокнистый материал – это асбест, представляющий собой тончайшие гибкие нити. Он обладает высокой огнестойкостью и низкой электропроводностью. Однако асбестовая пыль является высококанцерогенным веществом и потребление асбеста в мире быстро сокращается.

Синтетические ткани

Синтетические ткани по сравнению с искусственными обладают худшими гигиеническими свойствами. Лавсан и нитрон по внешнему виду напоминают шерсть, имеют хорошие теплозащитные свойства, увеличивают водопроницаемость (способность материала пропускать влагу при определенном давлении).

При производстве тканей химические волокна в различных пропорциях и соотношениях часто дабавляют к натуральным. Это дает возможность вырабатывать ткани с определенными свойствами.

Так, шерсть с добавлением вискозного волокна приобретает большую мягкость, лучше драпируется. Шерсть с добавлением капрона становится в два раза прочнее, менее сминаемой. Добавление лавсана или нитрона к натуральным волокнам увеличивает пористость, уменьшает усадку тканей, но затрудняет их сутюживание.

Добавление лавсана, капрона к хлопку, льну придает тканям несминаемость, увеличивает их износостойкость, но снижает гигиенические свойства.

Характеристика свойств тканей из химических волокон

Свойства тканей Показатели свойств тканей
вискозных ацетатных капрона лавсана нитрона
Физико-механические:
прочность Высокая Меньше, чем у вискозной Очень высокая Высокая Высокая
сминаемость Сильная Небольшая Небольшая Малая Средняя
драпируемость Средняя Средняя Малая Малая Малая
Гигиенические:
гигроскопичность Хорошая Средняя Низкая Низкая Низкая
воздухопроницаемость Хорошая Хорошая Незначительная Малая Малая
водопроницаемость Хорошая Средняя Малая Малая Малая
Теплозащитные Невысокие Меньше, чем у вискозной Слабые Высокие Очень высокие
Технологические:
усадка Большая Небольшая Слабая Слабая Слабая
раздвижка нитей Большая Большая Значительная Малая Малая
осыпаемость Большая Большая Значительная Большая Незначительная
Износостойкость Средняя Высокая Высокая Большая Высока

Лабораторно-практическая работаОпределение свойств искусственных и синтетических тканей

Оборудование: образцы тканей, препаровальная игла, рабочая коробка, (смотрите таблицы).

Смотрите таблицу – Свойства искусственных волокон

Смотрите таблицу – Свойства синтетических волокон

Смотрите таблицу – Характеристика свойств тканей из химических волокон

Ход работы

При определении свойств волокон и тканей сравнивайте полученные данные с данными таблиц.

Смотрите таблицу – Свойства искусственных волокон

Смотрите таблицу – Свойства синтетических волокон

Смотрите таблицу – Характеристика свойств тканей из химических волокон

  1. Рассмотреть образцы тканей. Определить искусственные и синтетические ткани по характеру горения. Заполнить таблицу.
  2. Сжать образцы несколько раз в руке в течение 30 с, определить их сминаемость.
  3. Намочить образцы, сравнить их прочность с прочностью сухих.
  4. Отрезать от образца полоску ткани шириной 0,2 см, длиной 2 см. Держа ее пинцетом, поджечь, по характеру горения определить вид волокна.
  5. Препаровальной иглой отделить от образцов по нескольку нитей, определить, какая ткань обладает большей осыпаемостью.
  6. Ответить на вопросы:

    1. Какие физикомеханические, гигиенические свойства ткани вы определяли?2. Какие ткани обладают лучшими физикомеханическими свойствами? 3. Какая ткань самая прочная?

История

Впервые мысль о том, что человеком может быть создан процесс, подобный процессу получения натурального шелка, при котором в организме гусеницы шелкопряда вырабатывается вязкая жидкость, затвердевающая на воздухе с образованием тонкой прочной нити, была высказана французским ученым Р. Реомюром ещё в 1734 году.

Производство первого в мире химического (искусственного) волокна было организовано во Франции в городе Безансоне в 1890 году и основано на переработке раствора эфира целлюлозы (нитрата целлюлозы), применяемого в промышленности при получении бездымного пороха и некоторых видов пластмасс.

Основные этапы в развитии химических волокон

  • На первом этапе — с конца XIX века до 1940—1950-х годов — разрабатывались и совершенствовались процессы получения искусственных волокон на основе природных полимеров из их растворов мокрым методом формования. Развивалось производство вискозных волокон. Некоторое развитие получили процессы сухого формования ацетатных волокон. Однако доминирующую роль в изготовлении текстильных изделий играли природные волокна, химические рассматриваются только как дополнение к природным волокнам. Изделия из химических волокон изготавливались в весьма небольших количествах.
  • На втором этапе — 1940-е—1970-е годы — развивались процессы синтеза волокнообразующих мономеров, полимеров и технологии получения волокон из расплавов синтетических полимеров. Одновременно сохранялось и совершенствовалось производство волокон мокрым методом формования. Производство химических волокон развивалось в промышленно развитых странах. В этот период созданы основные виды химических волокон, которые можно назвать «традиционными» или «классическими». Химические волокна рассматривались как дополняющие и только частично заменяющие природные волокна. Начинали развиваться процессы модифицирования волокон.
  • На третьем этапе — 1970—1990-е годы — выпуск химических волокон существенно возрос. Широко развились методы их модифицирования для улучшения потребительских свойств. Химические волокна приобрели самостоятельное значение для самых различных видов изделий и областей применения. Кроме того, они широко используются в смесях с природными волокнами. В этот же период в промышленно развитых странах созданы «волокна третьего поколения» с принципиально новыми специфическими свойствами: сверхпрочные и сверхвысокомодульные, термостойкие и трудногорючие, хемостойкие, эластомерные и др.
  • На четвёртом этапе — с 1990-х годов по настоящее время — идёт современный этап развития производства химических волокон, появление новых способов модифицирования, создание новых видов многотоннажных волокон: «волокон будущего» или «волокон четвёртого поколения». В их числе новые волокна на основе воспроизводимого растительного сырья (лиоцелл, полилактидные), новые мономеры и полимеры, получаемые путём биохимического синтеза и волокна на их основе. Проводятся исследования по применению новых принципов получения полимеров и волокон, основанных на методах генной инженерии и биомиметики.

Что такое волокна натурального происхождения

Это все волокна, которые происходят из природных источников, из них может формироваться растительная ткань, минеральное вещество или текстиль. Такие волокна являются биоразлагаемым и возобновляемым ресурсом. Они легко доступны из природных материалов и, как правило, имеют низкую стоимость за единицу объема. Эти волокна классифицируются по происхождению:

  • Растительные — одним из основных компонентов таких нитей является целлюлоза, которая используется при производстве бумаги и ткани. Она содержится в хлопке, льне и конопле. Пищевые волокна (клетчатка) содержатся в пищевых растительных продуктах, таких как злаки, фрукты, овощи, орехи. Это тот тип углеводов, который не усваивается ферментами нашего организма. Клетчатка помогает поддерживать здоровье кишечника и снизить риск заболеваний, таких как диабет, рак кишечника и ишемическая болезнь сердца.
  • Животные волокна, состоящие, в основном, из белка. Они включают шелковое волокно из шелкопрядов, меховое волокно (к примеру, из овечьей шерсти), коллагеновое волокно (извлеченное из шкур животных), хитин (извлеченный из ракообразных и моллюсков).

Минеральные волокна берут свое начало в породах с волокнистой структурой. Состоят, в основном, из силикатов. Единственным примером природного минерального волокна является асбест.

Нетканые материалы из химических волокон

Нетканые материалы можно получать как из натуральных, так и из химических волокон. Часто нетканые материалы производят из вторсырья и отходов других производств.

Волокнистая основа, подготовленная механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим способами, скрепляется.

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов:

  1. Химический или адгезионный (клеевой) – сформованное полотно пропитывается, покрывается или орошается связующим компонентом в виде водного раствора, нанесение которого может быть сплошным или фрагментированным.
  2. Термический – в этом способе используются термопластичные свойства некоторых синтетических волокон. Иногда используются волокна, из которых состоит нетканый материал, но в большинстве случаев в нетканый материал еще на стадии формования специально добавляют небольшое количество волокон с низкой температурой плавления (бикомпонент).

Польза пищевых волокон

Клетчатка (второе название данных волокон), в первую очередь, отвечает за нормальную работу желудочно-кишечного тракта. Также множество продуктов, богатых клетчаткой, содержит большое количество витаминов и минералов.

Фитнес-козинак (клюква-свекла)

Растительные волокна бывают двух типов: растворимые и нерастворимые. В кишечнике они впитывают воду и превращаются в гелеобразное вещество.

Пищеварение и здоровье кишечника

Это главный плюс данных волокон. Клетчатка облегчает и предотвращает запоры, увеличивает объем каловых масс, улучшает их консистенцию. Также клетчатка способствует населению кишечника полезными бактериями. Содержащиеся в ее составе пребиотики являются профилактикой рака толстой кишки.

Контроль массы тела

Регулярное потребление пищевых растительных волокон позволяет поддерживать постоянный здоровый вес.

Напиток Weight Control (яблоко-лимон)

Низкий уровень сахара в крови

Волокна способствуют замедлению процесса пищеварения. В итоге сахар медленнее всасывается в кровоток, что стабилизирует его уровень в крови.

Снижает холестерин и давление

Высокое давление и уровень «вредного» холестерина — главные факторы риска для болезней сердца и сосудов. При регулярном потреблении клетчатки в достаточном количестве возникает снижение липопротеидов низкой плотности.

Важно, чтобы в ежедневном рационе любого человека было достаточное количество клетчатки.

Кварцевое многомодовое волокно

Кварцевые волокна являются самым известным и распространенным типом оптических волокон. Поскольку многомодовые и одномодовые кварцевые волокна сильно отличаются по своим характеристикам и применению, удобнее рассмотреть их по отдельности.

Многомодовое кварцевое волокно имеет и сердцевину, и оптическую оболочку из кварцевого стекла. Как правило, такое оптоволокно имеет градиентный профиль показателя преломления. Это необходимо, чтобы снизить влияние межмодовой дисперсии. Как было показано выше, моды распространяются в оптическом волокне по разным траекториям, а значит, время распространения каждой моды также отличается. Это приводит к уширению передаваемого импульса. Градиентный профиль уменьшает разницу во времени распространения мод. За счет плавного изменения показателя преломления моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины. Полностью устранить влияние межмодовой дисперсии невозможно, поэтому многомодовое волокно уступает одномодовому по дальности и скорости передачи информации.

Рабочими для многомодового волокна обычно являются длины волн 850 и 1300 (1310) нм. Типичное затухание на этих длинах волн – 3,5 и 1,5 дБ/км соответственно.

Классификация. Кварцевое многомодовое волокно было первым типом волокна, которое стало широко применяться на практике. Распространение получили два стандартных размера многомодовых волокон (диаметр сердцевины/оболочки): 62,5/125 мкм и 50/125 мкм.

Общепринятая классификация многомодовых кварцевых волокон приводится в стандарте ISO/IEC 11801. Этот стандарт выделяет четыре класса многомодовых волокон (OM – Optical Multimode), отличающиеся шириной полосы пропускания (параметр, характеризующий межмодовую дисперсию и определяющий скорость передачи информации):

  • OM1 – стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 – стандартное многомодовое волокно 50/125 мкм;
  • OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Фраза «оптимизированное для работы с лазером» напоминает о том, что изначальна для передачи сигнала по многомодовому волокну использовались светодиоды (LED). С появлением полупроводниковых лазеров стали разрабатываться волокна более совершенной структуры, названные оптимизированными для работы с лазерами.

Применение. Многомодовое волокно применяется в непротяженных линиях связи (обычно сотни метров), причем волокно 50/125 мкм (OM2, OM3, OM4) используется в основном в локальных сетях и дата-центрах, а волокно 62,5/125 мкм часто применяется в индустриальных сетях. В гигабитных приложениях рекомендуется применять волокна классов OM3 и OM4. Причина, по которой многомодовое волокно до сих пор не вытеснено одномодовым волокном, обладающим лучшими характеристиками, заключается в меньшей стоимости компонентов линии (активное оборудование, соединительные изделия). Цена снижается из-за большего диаметра сердцевины многомодового волокна, и, соответственно, меньших требований к точности изготовления и монтажа компонентов.

Получение сырья для производства синтетики

Сырье для искусственных волокон получают путем выделения из веществ, образующихся в природе: (н-р: из древесины выделяют целлюлозу, из молока – казеин и т.п.). Предварительная обработка сырья состоит в его очистке от механических примесей и иногда в химической обработке для превращения природного полимера в новое полимерное соединение.

Для получения вискозного волокна на целлюлозно-бумажных комбинатах древесину измельчают и отваривают в щелочном растворе. В результате получается серая целлюлозная масса, которая отбеливается и прессуется в листы картона. Картон отправляют на предприятия химического волокна для дальнейшей переработки и получения волокон.

Сырье для синтетических волокон получают путем реакций синтеза (полимеризации и поликонденсации) полимеров из простых веществ (мономеров) на предприятиях химической промышленности. Предварительной обработки это сырье не требует.

Полимеризация — это процесс получения полимеров путём последовательного присоединения молекул низкомолекулярного вещества (мономера) к активному центру на конце растущей цепи. Молекула мономера, входя в состав цепи, образует её мономерное зерно. Число таких звеньев в макромолекуле называется степенью полимеризации.

Поликонденсация — это процесс получения полимеров из биили полифункциональных соединений (мономеров), сопровождающийся выделением побочного низкомолекулярного вещества (воды, спирта, галогеноводорода и др.).

Свойства волокон натурального происхождения

Такие нити обладают рядом качеств: малым весом и стоимостью, высокой удельной прочностью и удельной жесткостью. Эти свойства сделали их особенно привлекательными для многих различных промышленных целей. Все натуральные волокна не термопластичны — они не теряют своей формы и не размягчаются при нагревании. При температуре ниже точки разложения и распада они проявляют небольшую чувствительность к сухому теплу и не имеют усадки или высокой растяжимости при нагревании, а также не становятся хрупкими при охлаждении до температуры ниже нуля. Но под воздействием солнечного света и влаги натуральные волокна имеют тенденцию желтеть. А длительное воздействие приводит к потере прочности.

Все натуральные волокна особенно чувствительны к микробам разложения, включая плесень и гниль. Целлюлозные волокна разлагаются аэробными бактериями (получающими энергию от кислорода) и грибами. Они распадаются при высокой влажности, высоких температурах и, особенно, при отсутствии света. Термиты и серебряные рыбы тоже опасны для целлюлозы.

Шерсть и шелк подвержены не только микробному разложению бактериями и плесенью, но и повреждению от моли и ковровых жуков.

Химические волокна

Волокнистые материалы, полученные химическим способом, делят на две категории – искусственные и синтетические. Непряденые искусственные нити производят из природного сырья – целлюлозы, силикатов, казеина, металлов и других материалов. Наибольшее распространение получили вискозные волокна, получаемые методом химической обработки древесной целлюлозы. Нити вискозы имеют цилиндрическую форму. Также из целлюлозы изготавливают ацетатные и триацетатные волокнистые материалы.

Синтетическое волокно производится из органических полимеров, получаемых путем переработки нефти, газа и каменного угля. В зависимости от способа изготовления и исходного материала различают:

  • полиамидные;
  • полиэфирные;
  • полиакрилонитрильные;
  • поливинилхлоридные и другие.

Полиамидные и полиэфирные нити широко применяются в легкой промышленности. Полиамидные волокнистые материалы – высокопрочные и износостойкие, в смеси с другими используют для изготовления чулочно-носочной и трикотажной продукции. Полиэфирные нити характеризуются низкой теплопроводностью и высокой упругостью, их применяют для изготовления синтепона, синтепуха и других утеплителей. Производство синтепона сегодня в основном востребовано мебельными и обувными предприятиями, фабриками игрушек. Для верхней одежды используют более легкий синтепух, тинсулейт, холлофайбер.

Следующая статья по теме: «Волокно эвкалипта – свойства и применение»

Хлористые волокна

Хлористое волокно под действием тепла сильно стягивается. Это свойство используется при изготовлении пряжи для рукоделия. В пряжу добавляют 3-5% хлористого волокна, и после прядения, когда пряжу обрабатывают горячим паром, хлористое волокно стягивается больше, чем другие волокна, и стягивает пряжу, делая ее пушистой. Их хлористого волокна изготавливают т. н. белье против ревматизма, поскольку доказано, что статический заряд волокна оказывает болеутоляющее воздействие.

Торговые наименования: Rhovyl, Thermovyl.

Из растворов или расплавов полимеров формируют:

  • мононити — одиночные нити
  • комплексные нити, состоящие из ограниченного числа элементарных нитей (от 3 до 200), используются для выработки тканей и трикотажных изделий
  • жгуты, состоящие из очень большого количества элементарных нитей (сотни тысяч), используются для получения штапельных волокон определенной длины (от 30 до 200 мм), из которых вырабатывается пряжа
  • пленочные материалы
  • штампованные изделия (детали одежды, обуви)
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector