Какие изделия изготавливаются из сплава железа с алюминием?

Сферы применения алюминиевых сплавов

Сферы применения алюминия и его сплавов:

  1. Столовые приборы. Посуда из алюминия, вилки, ложки и емкости для хранения жидкостей популярны до сих пор.
  2. Пищевая промышленность. Этот металл используется в качестве добавки к пище. Его обозначение в составе продуктов — E Он является пищевой добавкой с помощью которой красят кондитерские изделия или защищают продукты от плесени.
  3. Ракетостроение. Алюминий используется при изготовлении топлива для запуска ракет.
  4. Военная промышленность. Приемлемая цена и малая удельная масса сделала этот металл популярным при производстве деталей для стрелкового оружия.
  5. Стекловарение. Этот материал используется при изготовлении зеркал. Связано это с его высоким коэффициентом отражения.
  6. Ювелирные изделия. Раньше украшения из алюминия были очень популярны. Однако постепенно его вытеснило серебро и золото.

Нельзя забывать про небольшую удельную массу материала. Алюминий считается одним из самых лёгких видов металла. Благодаря этому он используется для изготовления корпусов для самолётов и машин. Углубляясь в эту тему, можно сказать о том, что весь самолёт состоит минимум на 50% из этого металла.

Также этот металл содержится в организме человека. Если этого компонента не хватает, замедляются процессы роста и регенерации тканей. Человек чувствует усталость, могут появляться мышечные боли и повышенная сонливость. Однако чаще возникают ситуации, когда этого компонента больше нормы в организме. Из-за этого человек становится раздражительным и нервным. В случае переизбытка требуется отказаться от косметики с добавлением алюминия и медицинских препаратов с его содержанием в составе.

Цифровая маркировка ISO

В международной маркировке первая цифра обозначает группу основных легирующих элементов, по которым алюминиевые сплавы классифицируютя по 8 сериям:

  • 1000 серия — чистый алюминий с минимум 99% содержанием алюминия по весу.
  • 2000 серия (Cu) — сплавы, легированные медью, дюралюмины, они были когда-то самым распространенным из аэрокосмических сплавов. Главный недостаток — чувствительность к коррозионному растрескиванию и сплавы этой серии все чаще замененяются на серию 7000.
  • 3000 серия (Mn) — сплавы, легированна марганцем. Сплавы типа АМц
  • 4000 серия (Si) —литейные сплавы, легированные кремнием. Они также известны как силумины.
  • 5000 серия (Mg) — сплавы, легированные магнием. Сплавы типа АМг.
  • 6000 серия (Mg + Si) — сплавы, легированные магнием и кремнием, самые пластичные, и могут быть термоупрочнены закалкой на твердый раствор, но не достигают высокой прочность, как в 2000 и 7000 серии.
  • 7000 серия (Zn) — сплавы, легированные цинком, магнием, термоупрочняемы, самые прочные из алюминиевых сплавов.
  • 8000 серия в основном используются для литиевых сплавов.

В серии 1ХХХ две последние цифры обозначают минимальную массовую долю алюминия (%) сверх 99,00. В маркировке сплавов
серий от 2ХХХ до 8ХХХ две последние цифры не имеют специального назначения и служат только для обозначения различных сплавов в пределах данной группы. Вторая цифра в маркировке обозначает модификацию сплава

Американские модификации сплавов, зарегистрированные в других странах, близки, но не идентичны своим аналогам. В обозначении их отличает буква, следующая после цифровой маркировки. Сплавы, находящиеся в стадии опытного опробования, имеют перед цифровой маркировкой букву X.

В маркировке импортных сплавов после четирех цифр ставятся буквы и цифры, которые обозначают перядок и режимы механической и термической обработки сплавов алюминия.

1000 серия:
По ISO 1050 1060 1070А 1080А 1200 1350 1370
По ГОСТ АД0 АД00 АД000 АД АД0Е АД00Е
2000 серия:
По ISO 2017 2024 2117 2124 2618 2219 2014
По ГОСТ Д1 Д16 Д18 АД16ч АК4‑1 1201 АК8
3000 и 5000 серии:
По ISO 3003 3004 3005 5005 5050 5251 5052 5754 5154 5086 5083 5056
По ГОСТ АМц Д12 ММ АМг1 АМг1,5 АМг2 АМг2,5 АМг3 АМг4 АМг4,5
6000 и 7000 серии:
По ISO 6063 6101 6061 6082 6151 7005 7075 7175
По ГОСТ АД31 АД31Е АД33 АД35 1915 —-

Область применения

Никель-алюминиевые сплавы, содержащие железо, обычно легируют медью и кобальтом. Полученные соединения используют для изготовления магнитов разнообразных форм. Материал выходит твердый и хрупкий, с крупнозернистой структурой, поэтому изделия из него изготавливают методом отливки, с последующей шлифовкой специальным инструментом. При легировании кобальтом и титаном с применением термомагнитной обработки получаются изделия с наивысшей энергией. Они используются в сильно разомкнутых системах, так как обладают наиболее высокой коэрцитивной силой.

Именно эти свойства сплавов на никелевой основе дали возможность использовать их в качестве конструкционного материала для изготовления элементов газотурбинных двигателей. Детали реактивного двигателя — рабочие и сопловые лопатки, диски турбин и другие элементы — работают под воздействием температуры более 1100 °С многие тысячи часов, сохраняя при этом целостность металла.

Сплавы ални – незаменимы при производстве газотурбинных двигателей.

Чтобы предотвратить губительное влияние температурной коррозии, их поверхность покрывается защитным слоем. Для этого используется пакетная цементация либо покрытия, наносимые в газовой среде. В процессе диффузного воздействия происходит обогащение поверхностного слоя обрабатываемой детали алюминием с образованием алюминида никеля, который является основой покрытия.

Благодаря высоким антикоррозионным свойствам никелевые сплавы используются для плакировки сталей, что повышает их стойкость к износу и коррозии.

Никелевые сплавы – спасение от коррозии.

Вторичный алюминий для раскисления стали

Удобнее всего применять вторичный алюминий при производстве чушек и гранул по ГОСТ 295-98 – там большой простор для примесей, которые содержатся в алюминиевом ломе. Эти чушки и гранулы применяются для раскисления стали и других нужд черной металлургии. ГОСТ 295-98 прямо указывает на применение именно вторичного алюминия. В этом стандарте всего три сплава – АВ97, АВ91 и АВ87. Цифры обозначают минимальное содержание в сплаве суммарного количества алюминия и магния.

Самый чистый сплав – сплав АВ97. Он допускает содержание магния не более 0,1 %, получается, что алюминия в нем – не менее 96,9 %. Однако этот сплав допускают повышенное содержание железа – теоретически аж до 2 % и поэтому никак не потянет, например, на деформируемые сплавы АД0 или АД1 по ГОСТ 4784-97.

Самый «грязный» сплав – сплав АВ87. Он позволяет следующее содержание примесей: меди – до 3,8 %, цинка – до 3,3 %, кремния – до 5,0 %, свинца – до 0,3 %, олова – до 0,2 %. Железо, марганец и никель могут входить в состав сплава в любом количестве при условии общего содержания всех примесей не более 13,0 %.

Нефтяная и химическая промышленность

Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.

Рисунок 5 – Нефтяная вышка

Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.

Коррозионностойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.

Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.

Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.

В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах     от – 196 до +150 °С.

Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.

Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости – 1100 или 3003; сосуды высокого давления – из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов – из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062 .

Титан и титановые сплавы

Титан и сплавы из него маркируются согласно существующим ГОСТ буквами и цифрами. Закономерностей при маркировке не существует. Однако ключевая особенность в этом случае — это обязательное присутствие буквы «Т». Числа обозначают условный номер титанового сплава.

Технический титан может маркироваться как ВТ1−0 или ВТ1−00. Все остальное означает титановые сплавы и имеет другие маркировки, которые обозначаются по-разному, и все их перечислить не удастся.

Ключевое преимущество титана и материалов на его основе — это отличное сочетание таких свойств, как:

  • относительно низкая плотность;
  • очень высокая устойчивость к коррозии;
  • высокая механическая прочность.

Но есть у них и недостатки — это дефицитность и дороговизна. По этой причине применение этого материала в холодильной и пищевой промышленности ограничено. Титановые сплавы преимущество применяются в таких отраслях:

  • судостроение;
  • ракетостроение;
  • авиационное строительство;
  • химическое машиностроение;
  • транспортное машиностроение.

Материалы могут применяться при высоких температурах до 500 градусов. Изделия на основе титановых материалов производятся методом обработки под давлением, а также посредством литья. По составу литейные сплавы соответствуют деформируемым, но при маркировке в конце указываются буквой «Л».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector