Единицы измерения

Кинетическая энергия

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

Схема рассуждений такова: 1) попробуем записать работу, совершаемую всеми силами, действующими на материальную точку и, пользуясь вторым законом Ньютона (позволяющим выразить силу через ускорение), попытаемся выразить ответ только через кинематические величины, 2) убедившись, что это удалось, и что этот ответ зависит только от начального и конечного состояния движения, введём новую физическую величину, через которую эта работа будет просто выражаться (это и будет кинетическая энергия).

Если Atotal{\displaystyle A_{total}} — полная работа, совершённая над частицей, определяемая как сумма работ, совершённых приложенными к частице силами, то она выражается как:

Atotal=Δ(mv22)=ΔEk,{\displaystyle A_{total}=\Delta \left({\frac {mv^{2}}{2}}\right)=\Delta E_{k},}

где Ek{\displaystyle E_{k}} называется кинетической энергией. Для материальной точки кинетическая энергия определяется как половина произведения массы этой точки на квадрат её скорости и выражается как:

Ek=12mv2.{\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Единицы количества

единица → единица
(1)
единица → пара
единица → тройка
единица → полдюжины
единица → декада
единица → дюжина
единица → чертова дюжина
единица → скор (англ.)
единица → флок (англ.)
единица → шок (англ.)
единица → сотня
единица → большая сотня (англ.)
единица → гросс
единица → тысяча
единица → большой гросс

Единицы:

единица
(1)

 /
пара

 /
тройка

 /
полдюжины

 /
декада

 /
дюжина

 /
чертова дюжина

 /
скор (англ.)

 /
флок (англ.)

 /
шок (англ.)

 /
сотня

 /
большая сотня (англ.)

 /
гросс

 /
тысяча

 /
большой гросс

 открыть 

 свернуть 

Проценты и доли

единица → процент
(%)
единица → промилле
(‰)
единица → частей на миллион
(ppm)
единица → частей на миллиард
(ppb)

Единицы:

процент
(%)

 /
промилле
(‰)

 /
частей на миллион
(ppm)

 /
частей на миллиард
(ppb)

 открыть 

 свернуть 

Дроби

Внимание! Эта секция помогает ответить на вопросы такого типа: «Сколько 1/7-ых в одной половинке?» Чтобы получить ответ, введите 1 напротив 1/2 и посмотрите результат напротив 1/7. А теперь проверьте себя! Сможете при помощи нашего калькулятора быстро решить задачку: «Несколько одинаковых тортов разделили на 9 равных частей каждый, потом некоторые куски съели

Осталось 15 кусков. Если бы торты делили на 6 равных частей, и съели бы ровно такой же объём, сколько осталось бы кусков?». Наш калькулятор позволяет получить ответ в одно действие.

единица → половина
(1/2)
единица → треть
(1/3)
единица → четверть
(1/4)
единица → одна пятая
(1/5)
единица → одна шестая
(1/6)
единица → одна седьмая
(1/7)
единица → одна восьмая
(1/8)
единица → одна девятая
(1/9)
единица → одна десятая
(1/10)
единица → одна шестнадцатая
(1/16)
единица → одна тридцать вторая
(1/32)

Единицы:

половина
(1/2)

 /
треть
(1/3)

 /
четверть
(1/4)

 /
одна пятая
(1/5)

 /
одна шестая
(1/6)

 /
одна седьмая
(1/7)

 /
одна восьмая
(1/8)

 /
одна девятая
(1/9)

 /
одна десятая
(1/10)

 /
одна шестнадцатая
(1/16)

 /
одна тридцать вторая
(1/32)

 открыть 

 свернуть 

Метрические префиксы

Эти префиксы широко используются в системе SI, могут применяться к любой единице. Например, килояблоко — это 1000 яблок.

единица → йокто
(y)
единица → цепто
(z)
единица → атто
(a)
единица → фемто
(f)
единица → пико
(p)
единица → нано
(n)
единица → микро
(µ, mc)
единица → милли
(m)
единица → санти
(c)
единица → деци
(d)
единица → дека
(da)
единица → гекто
(h)
единица → кило
(k)
единица → мега
(M)
единица → гига
(G)
единица → тера
(T)
единица → пета
(P)
единица → экза
(E)
единица → зетта
(Z)
единица → йотта
(Y)

Единицы:

йокто
(y)

 /
цепто
(z)

 /
атто
(a)

 /
фемто
(f)

 /
пико
(p)

 /
нано
(n)

 /
микро
(µ, mc)

 /
милли
(m)

 /
санти
(c)

 /
деци
(d)

 /
дека
(da)

 /
гекто
(h)

 /
кило
(k)

 /
мега
(M)

 /
гига
(G)

 /
тера
(T)

 /
пета
(P)

 /
экза
(E)

 /
зетта
(Z)

 /
йотта
(Y)

 открыть 

 свернуть 

Количество выступающих

единица → солист
единица → дуэт
единица → трио
единица → квартет
единица → квинтет
единица → сикстет
единица → септет
единица → октет

Единицы:

солист

 /
дуэт

 /
трио

 /
квартет

 /
квинтет

 /
сикстет

 /
септет

 /
октет

Эталоны длины и массы, международные прототипы.

Международные прототипы эталонов длины и массы – метра и килограмма – были переданы на хранение Международному бюро мер и весов, расположенному в Севре – пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45°, иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.

Международные прототипы были выбраны из значительной партии одинаковых эталонов, изготовленных одновременно. Другие эталоны этой партии были переданы всем странам-участницам в качестве национальных прототипов (государственных первичных эталонов), которые периодически возвращаются в Международное бюро для сравнения с международными эталонами. Сравнения, проводившиеся в разное время с тех пор, показывают, что они не обнаруживают отклонений (от международных эталонов), выходящих за пределы точности измерений.

Основные единицы

В таблице представлены все основные единицы СИ вместе с их определениями, российскими и международными обозначениями, физическими величинами, к которым они относятся, а также с кратким обоснованием их происхождения.

Основные единицы СИ
Единица Обозначение Величина Определение Историческое происхождение, обоснование
Секунда сs Время Величина секунды устанавливается фиксацией численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 К равным в точности 9 192 631 770, когда она выражена единицей СИ с−1, что эквивалентно Гц. Солнечные сутки разбиваются на 24 часа, каждый час разбивается на 60 минут, каждая минута разбивается на 60 секунд.Секунда — это 1(24 × 60 × 60) часть солнечных суток.Современное определение принято на XIII Генеральной конференции по мерам и весам (ГКМВ) в 1967 году.
Метр мm Длина Величина метра устанавливается фиксацией численного значения скорости света в вакууме равным в точности 299 792 458, когда она выражена единицей СИ м·с−1. 110 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа.Современное определение установлено XVII ГКМВ в 1983 г.
Килограмм кгkg Масса Величина килограмма устанавливается фиксацией численного значения постоянной Планка h равным в точности 6,626 070 15 × 10−34, когда она выражена в Дж⋅с. Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря. В течение более чем двухсот лет эталоном килограмма служили материальные образцы — Архивный килограмм, затем Международный прототип килограмма.
Ампер АA Сила электрического тока Величина ампера устанавливается фиксацией численного значения элементарного заряда e равным 1,602 176 634 × 10−19, когда он выражен в кулонах. Предыдущее определение, восходящее к изначальному: ампер есть сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2⋅10−7ньютонов.
Кельвин КK Термодинамическая температура Величина кельвина устанавливается фиксацией численного значения постоянной Больцмана k равным в точности 1,380 649 × 10−23, когда она выражена в Дж/К. В 1967—2019 годах определялся как 1/273,16 части тройной точки воды. Шкала Кельвина использует тот же шаг, что и шкала Цельсия, но 0 кельвинов — это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге шкалы Цельсия и Кельвина сдвинуты на 273,15: T  = T  − 273,15.
Моль мольmol Количество вещества Один моль содержит ровно 6,022 140 76 × 1023 элементов. Это число — фиксированное значение постоянной Авогадро NA, выраженной в единицах моль−1, и называется числом Авогадро. Атомный вес или молекулярный вес, деленный на постоянную молярной массы, 1 г/моль. В 1971—2019 годах определялся как количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 12 г.
Кандела кдcd Сила света Величина канделы устанавливается фиксацией численного значения световой эффективности монохроматического излучения частотой 540·1012 Гц равным в точности 683, когда она выражена единицей СИ м−2·кг−1·с3·кд·ср или кд·ср·Вт−1, что эквивалентно лм·Вт−1. Сила света (англ. Candlepower, устар. Британская единица силы света), испускаемая горящей свечой.Современное определение установлено XVI ГКМВ в 1979 г.

Наименования и обозначения основных единиц, так же как и всех других единиц СИ, пишутся маленькими буквами (например, метр и его обозначение м). У этого правила есть исключение: обозначения единиц, названных фамилиями учёных, пишутся с заглавной буквы (например, ампер обозначается символом А).

Свет и освещенность.

Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м2, а интенсивность световой волны – в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.

Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540Ч1012 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.

Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4 p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.

«Механическая работа. Механическая мощность»

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы  равна произведению модуля вектора силы на модуль вектора перемещения  и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: = Дж = Н • м.
Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

  1. Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
  2. Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.

Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.

Примеры расчёта работы отдельных сил:

Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)

По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна

Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!

Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .

Мощность показывает, какая работа совершается за 1 с.
Единица измерения мощности в СИ – ватт: = Дж/с = Вт.
Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

Может пригодиться! 1 л. с

(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим  

Для равноускоренного движения (F = const)   где ʋср– средняя скорость движения за расчётный промежуток времени.

Конспект урока «Механическая работа. Механическая мощность».

Следующая тема: «Кинетическая и потенциальная  энергия» (код ОГЭ 1.17)

Мощность как физическая величина, формула мощности

Значение, показывающее, как быстро происходят преобразование, трансляция или потребление энергии в какой-либо системе, – мощность

Для характеристик энергетических условий важно, насколько быстро выполняется процесс. Работа, реализуемая в единицу времени, именуется мощностью:

P = А/t,

где:

  • А – работа;
  • t – время.

Можно учитывать отдельно мощность в механике и электрическую мощность.

Чтобы получить ответ на вопрос: в чем измеряется механическая мощность, рассматривают действие силы на движущееся тело. Сила проделывает работу, мощность в таком случае определяется по формуле:

N = F*v,

где:

  • F – сила;
  • v – скорость.

При вращательном движении эту величину определяют с учётом момента силы и частоты вращения, «об./мин.».

Единицы измерения

Основной единицей, которой принято выражать осуществляемую электротоком трансформацию, является джоуль. Данное наименование единица получила по фамилии английского физика, обосновавшего опытным путем закон сохранения энергии. В сокращенном виде джоуль пишется как «Дж». Выразить величину через другие единицы измерения можно, используя основную формулу: 1 Дж = 1 А*1В*1 с (ампер, вольт и секунда, соответственно).

Важно! Приборы учета затраченной электроэнергии используют иную единицу измерения – киловатт-час (указывается как кВт*ч). Связано это с тем, что джоуль является весьма некрупной единицей, а один киловатт-час равен 3600000 джоулей

Поскольку функционирование осветительных приборов и бытовой техники в жилой квартире или доме продолжается сотни часов ежемесячно, и в процессе этого реализуется значительная работа тока, киловатт-час является куда более адекватной данным условиям измерительной единицей.

Что означают цифры, определяемые тонометром?

Когда пациент определился, что подразумевают единицы измерения АД, возникает следующий немаловажный вопрос: что означают цифры на тонометре, и как они расшифровываются. На приборе независимо от того электронный он или механический пациент может увидеть две цифры.

Первая цифра (систолическое) всегда больше. Она показывает, с какой силой работает сердце. Эта цифра также отображает насыщение органов кислородом. Второе значение (диастолическое) формируется в расслабленном состоянии. Она показывает, как влияют капилляры на поток крови в состоянии покоя. От этого значения зависит также работа мочевыводящей системы.

Обе цифры в сочетании влияют на полноценное движение крови по сосудам. Поэтому каждый из показателей по-своему важен для качественной работы сердечно-сосудистой системы. Чтобы не было никаких нарушений, нужно постоянно контролировать значения, измеряя давление тонометром. Если цифры находятся в допустимых пределах, проблем не будет.

Установленные нормы давления следующие: систолическое – 120, диастолическое – 70. При небольших разбегах, если человек не испытывает дискомфорта, патология не регистрируется. В каждом возрасте норма отличается, однако в среднем в молодом возрасте АД не должно превышать 140 на 90. Пониженным считается давление менее 100 на 65.

Гипертония может быть 1,2 или 3 степени в зависимости от значений на тонометре и самочувствия пациента. Первая практически не опасна и быстро излечивается

Важно выявить гипертонию на ранней стадии и приступить к лечению. Более запущенные формы лечатся годами

Измерение ионизирующих излучений

С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:

  1. Экспозиционная доза – показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица – рентген (Р). Один рентген – большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
  2. Поглощенная доза – энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения – грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица – рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
  3. Эквивалентная доза – поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК –коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).

В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:

  • для альфа-частиц – 10-20;
  • для гамма- и бета-излучения – 1;
  • для протонов – 5-10;
  • для нейтронов со скоростью до 10 кэВ – 3-5;
  • для нейтронов со скоростью больше 10 кэВ: 10-20;
  • для тяжелых ядер – 20.

Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.

Основные радиологические величины и единицы
Величина Внесистемные Си Соотношения между единицами
Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·1010Бк
1 Бк = 1 расп/с
1 Бк=2.7·10-11Ки
Экспозицион-
ная доза, X
Рентген (Р, R) Кулон/кг
(Кл/кг, C/kg)
1 Р=2.58·10-4 Кл/кг
1 Кл/кг=3.88·103 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр) Зиверт (Зв, Sv) 1 бэр=10-2 Зв
1 Зв=100 бэр
Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10-5 Гр·кг
1 Гр·кг=105 рад·г

История.

Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора.

Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

Формула взаимосвязи между мощностью, напряжением и силой тока

В электротехнике работу рассматривают как некоторое количество энергии, отдаваемое источником питания на действие электроприбора в период времени. Поэтому электрическая мощность есть величина, описывающая быстроту трансформации или передачи электроэнергии. Её формула для постоянного тока выглядит так:

P = U*I,

где:

  • U – напряжение, В;
  • I – сила тока, А.

Для некоторых случаев, пользуясь формулой закона Ома, мощность можно вычислить, подставив значение сопротивления:

P = I*2*R, где:

  • I – сила тока, А;
  • R – сопротивление, Ом.

В случае расчётов мощности цепей переменного тока придётся столкнуться с тремя видами:

  • активная её формула: P = U*I*cos ϕ, где – коэффициент угла сдвига фаз;
  • реактивная рассчитывается: Q = U*I*sin ϕ ;
  • полная представлена в виде: S = √P2 + Q2, гдe P – aктивная, а Q2 – реактивная.

Расчёты для однофазной и трёхфазной цепей переменного тока выполняются по разным формулам.

Важно! Потребители электроэнергии на предприятиях в большинстве асинхронные двигатели, трансформаторы и другие индуктивные приёмники. При работе они используют реактивную мощность, а та, протекая по линиям электропередач, приводит ЛЭП к дополнительной нагрузке

Чтобы повысить качество энергии, используют компенсацию реактивной энергии в виде конденсаторных установок.

Зависимость от возраста

Показатели нормы являются достаточно усредненной величиной. Сложно сказать, какое АД в целом будет считаться правильным. Дело в том, что оно зависит от огромного количества факторов. У одного и того же человека могут отличаться показатели в разное время суток, в разном возрасте и т. д. Меняется АД при физических нагрузках. Определять такие показатели как давление, пульс, частота сердечных сокращений лучше всего утром в спокойном умеренном состоянии. В это время показатели будут максимально точны. Кроме этого, на значения влияет то, в каком эмоциональном и психологическом состоянии находится человек на данный момент. В периоды волнения и переживания АД тоже может расти. Эти факторы физиологические, а не патологические, поэтому никакой опасности они не несут. Сбои давления обычно быстро восстанавливаются, и сердце начинает работать в привычном режиме.

Как уже было сказано, у женщин и мужчин давление отличается. Интересно, что до 40 лет у мужчин показатели больше, а после 40 – у женщин. Такому факту есть объяснение: изменение гормонального фона. В молодом возрасте женские гормоны позволяют поддерживать сердечно-сосудистую систему в отличном состоянии. После 40 у женщин наступает менопауза, а гормональный фон также претерпевает изменения, что отражается на работе других органов.

Другая динамика – это изменение АД по возрастам.

У новорожденных показатели низкие, и составляют они примерно 95 на 60. В детстве давление повышается до 100 на 70. У подростков оно практически приравнивается к норме взрослого человека. К 20 годам давление постепенно повышается до 120 на 70. У пожилых людей показатели очень высокие, так как сердцу необходимая большая нагрузка, чтобы перекачивать кровь. У женщин от 60 лет АД составляет в норме 159 на 85. У мужчин – 145 на 82.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector