Гост р 8.699-2010 государственная система обеспечения единства измерений (гси). величины, единицы, шкалы измерений, используемые в глобальной навигационной спутниковой системе

2.3. Правило сложения

Сложение — это процедура,
выполняемая, как правило, над числами и над величинами, характеризующими
свойства тел, например вес.

Веса обладают свойством аддитивности. Если тело весом
1 соединить с другим телом того же веса, то образуется тело, вес которого равен
сумме весов двух тел, т. е., 2. Можно построить приемлемую процедуру сложения
весов, но не удельных весов.

Удельный вес не обладает свойством аддитивности: мы не можем построить такой процесс соединения двух тел с
равным удельным весом, посредством которого было бы образовано тело с удельным
весом, большим, чем удельный вес каждого из этих двух тел. При соединении двух
тел с равным удельным весом, мы получаем тело с тем же самым удельным весом.
Если мы попытаемся применить сложение для удельных весов, то придем к выводу чтоправило сложения неверно.

2.6.1. Номинальная шкала

Шкала, содержащая только категории; данные в ней не могут
упорядочиваться, с ними не могут быть произведены никакие арифметические
действия.

Номинальные переменные
используются только для качественной
классификации. Это означает, что данные переменные могут быть измерены только в
терминах принадлежности к некоторым, существенно различным классам; при этом вы
не сможете определить количество или упорядочить эти классы. Например, вы
сможете сказать, что два индивидуума различимы в терминах переменной А
(например, индивидуумы принадлежат к разным национальностям). Данные,
измеренными в этой шкале, не могут упорядочиваться, с ними не могут быть
произведены никакие арифметические действия.

Номинальная шкала состоит
из названий, категорий, имен для классификации и сортировки объектов или
наблюдений по некоторому признаку.

Для этой шкалы применимы
только операции равно (=) и не равно (≠).

Часто номинальные
переменные называют категориальными.

Примеры:

1)Профессия 

2)Город
проживания 

3)Семейное
положение

4)Пол

5)Национальность

Свойства шкал

Неравномерная шкала омметра

  • Начальное значение шкалы — наименьшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений. Во многих случаях шкала начинается с нулевой отметки, однако могут быть и другие значения — например, у медицинского термометра это 34,3 °C.
  • Конечное значение шкалы — наибольшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений.
  • Характер шкалы — функциональная зависимость a = f(x) между линейным (или угловым) расстоянием a какой-либо отметки от начальной отметки шкалы, выраженным в долях всей длины шкалы, и значением x измеряемой величины, соответствующим этой отметке:
    • Равномерная шкала — шкала, отметки на которой нанесены равномерно.
    • Неравномерная шкала — шкала, отметки на которой нанесены неравномерно.
    • Логарифмическая или гиперболическая шкала — шкала с сужающимися делениями, характеризуемыми тем, что отметка, соответствующая полусумме начального и конечного значений, расположена между 65 и 100 % длины шкалы. Следует заметить, что выражение «логарифмическая шкала» используется и по отношению к другому значению понятия «шкала» (см.: Шкала физической величины, Логарифмический масштаб).
    • Степенная шкала — шкала с расширяющимися или сужающимися делениями, но не подпадающая под определение логарифмической (гиперболической) шкалы.

2.4. Различие между количеством и качеством

Различие между весом и удельным весом
имеет непосредственное отношение к данному вопросу. Различие между этими двумя
характеристиками связано с различием между
количеством вещества и его
свойствами, или
качеством. Мы считаем, что количество вещества в
теле есть нечто такое, что увеличивается при объединении двух тел, в то время
как свойством (качеством) вещества являются такие признаки, которые посредством
объединения двух одинаковых тел вообще не меняются. Поэтому свойства вещества,
которые удовлетворяют закону сложения, являются количественной характеристикой, в то время как свойства, для
которых закон сложения неверен, есть качественная
характеристика вещества.

Шкала абсолютных величин

Часто величина чего-либо измеряется напрямую. К примеру, непосредственно подсчитывают количество дефектов в изделиях, число единиц выпущенной продукции, количество присутствующих на лекции студентов, сколько прожито лет и так далее. Делая такие измерения, на шкале отмечаются точные абсолютные количественные значения того, что измеряется. Шкала абсолютных значений имеет точно такие же свойства, что шкала отношений. Разница лишь в том, что те величины, которые обозначаются на первой, носят абсолютный, а не относительный характер.

Результаты, получаемые после измерения по данной шкале, обладают наибольшей достоверностью и информативностью. Они очень чувствительны к неточностям в измерениях.

Примечания

  1. Журавлев Ю.И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
  2. ↑ Анфилатов В. С., Емельянов А. А., Кукушкин А. А. Системный анализ в управлении. — М. Финансы и статистика, 2002. — 368 с.
  3. Перегудов Ф. И., Тарасевич Ф. П. Введение в системный анализ. — М.: Высшая школа, 1989. — 367 с.
  4. ↑ Бахрушин В.Є. Методи аналізу даних. — Запоріжжя, КПУ, 2011
  5. Mosteller, Frederick. Data analysis and regression : a second course in statistics (англ.). — Reading, Mass: Addison-Wesley Pub. Co, 1977. — ISBN 978-0201048544.
  6. Wolman, Abel G. Measurement and meaningfulness in conservation science (англ.) // Conservation biology : journal. — 2006.
  7. . Institute for Digital Research and Education. University of California, Los Angeles. Дата обращения 7 февраля 2016.
  8. , Зиннес Д. Основы теории измерений // Психологические измерения. М.: 1967. С. 9-110.

Использование в психометрии

Основная статья: Психометрия

Используя различные шкалы, можно производить различные психологические измерения. Самые первые методы психологических измерений были разработаны в психофизике. Основной задачей психофизиков являлось то, каким образом определить, как соотносятся физические параметры стимуляции и соответствующие им субъективные оценки ощущений. Зная эту связь, можно понять, какое ощущение соответствует тому или иному признаку. Психофизическая функция устанавливает связь между числовым значением шкалы физического измерения стимула и числовым значением психологической или субъективной реакцией на этот стимул.

Шкала порядка

Места, которые величины занимают в такой шкале, называются рангами. Саму шкалу также называют ранговой либо неметрической. В ней все числа упорядочиваются по занимаемым местам. Интервалы между ними нельзя точно измерить. Данная шкала дает возможность не только установить равенство или неравенство между измеряемыми объектами, но и определить характер неравенства в виде логических суждений типа «больше и меньше», «хуже и лучше».

При помощи шкалы порядка можно измерять показатели, являющиеся качественными, но не имеющие строгих количественных мер. Широкое применение нашли такие шкалы в психологии и педагогике, а также социологии.

Интервальная шкала

Интервальная шкала обладает метрическими свойствами — она характеризуется значением интервала и допускает арифметическое сложение.

Интервальные шкалы часто называют шкалами высокого типа, количественными, числовыми. Смысл таких определений очевиден: числа, полученные с помощью шкал высокого типа, больше похожи на те числа, которые знакомы каждому из нас со школьной скамьи.

Интервальная шкала обладает также характеристикой расстояния между отдельными градациями шкалы, измеряемого с помощью определенной единицы измерений. На этой шкале оцениваются разности между отдельными градациями шкалы и можно решить, равны они или нет, а если не равны, то какая из двух больше.

Интервальная шкала обладает также характеристикой расстояния между отдельными градациями шкалы, измеряемого с помощью определенной единицы измерений, то есть используется количественная информация. На этой шкале уже не бессмысленны разности между отдельными градациями шкалы. В данном случае можно решить, равны они или нет, а если не равны, то какая из двух больше.

Они представляют собой интервальные шкалы с естественным началом.

Простейшим примером интервальной шкалы может служить шкала измерения температуры по Цельсию.

При использовании интервальной шкалы адекватным является сравнение расстояний между парами одной и той же системы.

Непрерывный континуум интервальной шкалы позволяет рассчитывать средневзвешенные величины, коэффициент дисперсии, характеризующий степень разбросанности признака. При этом средневзвешенные величины используются в качестве разного рода индексов, выполняющих функцию классификации, измерения и сравнения.

Условием применения интервальной шкалы является регулярность классов интервалов.

Если в интервальной шкале масштаб зафиксирован, то измерение происходит в шкале разностей. Шкала разностей допускает операции равенство-неравенство, больше-меньше, равенство-неравенство интервалов и операцию вычитания, на основе которой устанавливается величина интервала в фиксированном масштабе. К шкале разностей относятся логарифмические шкалы, а также процентные и аналогичные им шкалы измерений, задающие безразмерные величины.

Измерения в интервальных шкалах в известном смысле более совершенны, чем в порядковых. Применение этих шкал дает возможность не только упорядочить объекты по количеству свойства, но и сравнить между собой разности количеств.

Это справедливо для любых интервальных шкал.

Если начало в интервальной шкале является абсолютной нулевой точкой, то возникает возможность отразить в шкале, во сколько раз одно измерение отличается от другого. Соответствующая шкала называется шкалой отношений.

Частично-упорядоченное множество типов шкал, наиболее часто использующихся в социологических.

Наиболее типичные способы получения интервальной шкалы фактически описаны выше.

Иерархия шкал измерений

Иерархия шкал измерений. Слева — самая слабая шкала, справа — самая сильная.

Все шкалы делят также на 2 большие группы: качественные и количественные. К качественным шкалам относят номинальную и порядковую, к количественным — все остальные. Это разделение показывает разницу в природе шкал: например, невозможно утверждать, что школьная оценка 2 настолько же хуже оценки 4, насколько 3 хуже оценки 5, поэтому порядковые шкалы относят к качественным. В то же время, для тел разной массы аналогичное утверждение корректно: тело массой 5 кг настолько же тяжелее тела массой 3 кг, насколько тело массой 4 кг тяжелей тела массой 2 кг. Таким образом, шкалы отношений — это количественные шкалы.

Очевидно, что КДП одной шкалы может полностью включать в себя КДП другой. Тогда говорят, что вторая шкала сильнее первой. На иллюстрации изображена иерархия шкал.

Шкалы измерений

Номинальная шкала

В шкале наименований допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются как метки, только для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения — мужской, женский. Очевидно, что не имеет смысла складывать номера телефонов или умножать серии паспортов.

КДП: биективные преобразования.

Порядковая шкала

В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Заметим, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе ровно тот же смысл выражается словесно — неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается «нечисловой» характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго монотонные преобразования.

КДП: все строго монотонные преобразования.

Шкала интервалов

По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: °C = 5/9 (°F — 32), где °C — температура (в градусах) по шкале Цельсия, а °F — температура по шкале Фаренгейта.

КДП: все преобразования вида

Шкала отношений

В шкалах отношений есть естественное начало отсчета — нуль, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена. Примеры использования таких преобразований: пересчет цен из одной валюты в другую по фиксированному курсу, перевод массы из килограмм в фунты.

КДП: все преобразования вида

Шкала разностей

В шкале разностей есть естественная единица измерения, но нет естественного начала отсчета. Время измеряется по шкале разностей, если год (или сутки — от полудня до полудня) принимаем естественной единицей измерения, и по шкале интервалов в общем случае. На современном уровне знаний естественного начала отсчета времени указать нельзя. Допустимыми преобразованиями шкале разностей являются сдвиги.

КДП: все преобразования вида

Абсолютная шкала

Только для абсолютной шкалы результаты измерений — числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.

КДП:

Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений

Классификация измерительных шкал

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная .

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную

Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п

Шкалы измерения по Стивенсу

2.2. Условия упорядоченности

Номера так же, как и числа, упорядочены;
первые — произвольные образом, вторые — на основании двух отношений,
существующих между упорядоченными объектами, — отношений, специальное название
которых транзитивность и антисимметричность.

Транзитивность — если А находится в некотором
отношении к В, а В к С, то А находится в том же отношении к С.

Симметричность — если А находится
в некотором отношения к В, то В находится в том же отношении к А.

Антисимметричность — если А больше В, то В
меньше А.

Отношение порядка применимо к свойству
твердости: все тела, к которым применимо это понятие, связаны между собой
транзитивным и антисимметричным отношением „тверже, чем» или обратным
отношением
„мягче, чем»; каждое тело,
твердость„которого мы хотим определить, либо тверже любого другого тела того же
класса, либо мягче него.

Отношение „тверже, чем» является
транзитивным и антисимметричным.

Оно транзитивно потому, что если Аоставляет
царапину на В, а В — на С,
то Аоставляет царапину на С.

Оно антисимметрично потому, что если Аоставляет
царапину на В, то Вне
оставляет царапину на А.

Измерение и качество продукции

Как уже было сказано ранее, если успешно решить вопросы, которые связаны с точностью измерения качественных параметров материалов и прочих изделий, а также поддержания режимов в технологии производства, качество продукции значительно улучшится. Если говорить простыми словами, контроль качества – это замеры всех параметров технологических процессов. Результаты их измерений нужны для управления процессом. Чем точнее результаты, тем лучше контроль.

У состояния измерений есть следующие основные свойства:

  • Воспроизводимость измерительных результатов.
  • Точность.
  • Сходимость.
  • Скорость получения.
  • Единство измерений.

Воспроизводимость результатов – это близость измерительных результатов одной величины, которые были получены в различных местах, при помощи разных методов и средств, в разное время и разными людьми, но при одинаковых условиях (влажности, давлении, температуре).

Сходимость измерительных результатов – это когда результаты измерений одной величины, которые проводились повторно с помощью одних и тех же средств, тем же методом, в одних и тех же условиях, с одинаковой тщательностью, близки.

Любое измерение осуществляют с использованием соответствующих шкал.

Шкала отношений

Она отличается от интервальной шкалы строгим определением положения нулевой точки. По этой причине она не ограничивает математический аппарат, который используется при обработке результатов.

Что такое шкала отношений? По ней измеряют величины, образуемые как разности чисел, которые отсчитываются по шкале интервалов. Таким образом, календарное время отсчитывают по интервальной, а промежутки времени – по шкале отношений.

При использовании данного типа измерение любой величины является экспериментальным определением отношения этой самой величины к подобной ей, которая принимается за единицу. При измерении длины объекта можно узнать, во сколько раз она больше длины другого объекта, который принят за единицу длины, например, метровой линейки. Если применять только шкалы отношений, то измерению можно дать более частное, узкое определение: измерение любой величины – есть нахождение опытным путем ее отношения к соответствующей единице.

2.6.4. Относительная шкала

Шкала, в которой есть
определенная точка отсчета и
возможны отношения между значениями
шкалы. Относительные переменные очень похожи на интервальные переменные. В
дополнение ко всем свойствам переменных, измеренных в интервальной шкале, их
характерной чертой является наличие определенной точки абсолютного нуля, таким
образом, для этих переменных являются обоснованными предложения типа:
X в два раза больше, чем Y. Типичными примерами шкал отношений являются
измерения времени или пространства. Например, температура по Кельвину образует
шкалу отношения, и вы можете не только утверждать, что температура 200 градусов
выше, чем 100 градусов, но и что она вдвое выше. Интервальные шкалы (например,
шкала Цельсия) не обладают данным свойством шкалы отношения. Заметим, что в
большинстве статистических процедур не делается различия между свойствами
интервальных шкал и шкал отношения.

Для этой шкалы применимы
операции: равно (=), не равно (≠), больше (>), меньше (<), сложения
(+), вычитания (-), умножения (*) и деления (/).

Относительные и
интервальные шкалы являются числовыми.

Примеры:

1)Вес
новорожденных детей 4 кг и 3 кг. Первый ребенок в 1,33 раза тяжелее второго.

2)Цена на
картофель в супермаркете в 1,2 раза выше, чем на базаре.

Вывод

Таким образом, стало понятно, что такое шкала измерений и для чего она используется. Как выяснилось, она не одна. Их пять, и каждая используется для измерения определенных величин. Если раньше казалось, что шкала должна измерять только физические величины, то оказывается, в таких науках, как психология и социология, тоже есть свои шкалы, которые измеряют числовые показатели. По сути, психологический тест тоже является такой шкалой.

Измеряемая величина называется переменной, а то, чем производится измерение – инструментом. В результате получаются данные либо результаты, которые могут быть различного качества и относиться к одной из шкал. Каждая из них ставит ограничения на использование каких-то математических операций.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector