Цианирование стали

Насыщение — поверхность

Насыщение поверхности углеродом ранее повсеместно проводилось в твердом карбюризаторе, основными компонентами которого являются древесный уголь, углекислый барий и кальций. Деталь и карбюризатор помещают в ящик. Для нагрева используют обычные камерные печи.

Насыщение поверхности азотом, высокая твердость и остаточные напряжения сжатия резко повышают коррозийную стойкость и износостойкость азотированных стальных деталей.

Насыщение поверхности титана кислородом и особенно азотом и водородом значительно повышает коррозионную стойкость титана в серной кислоте.

Насыщение поверхности слоя стали азотом повышает его твердость и износоустойчивость. Этот процесс термохимической обработки называется азотированием. Азотирование деталей вытяжных, формовочных и гибочных штампов дает большой эксплуатационный эффект.

Насыщение поверхности малоуглеродистой стали углеродом называется цементацией. Целью цементации является получение на поверхности детали твердой износоустойчивой корочки при сохранении пластичной и вязкой сердцевины, хорошо сопротивляющейся ударам, а также повышение усталостной прочности стали.

После насыщения поверхности хемосорбированным окислителем ( процесс, приводящий к образованию монослоя окислителя), может иметь место и физическая адсорбция молекул окислительного компонента коррозионной среды. При термодинамической стабильности окисла в данных условиях хемосорбированная пленка в результате протекания химической реакции и перестройки атомов металла п кислорода превращается в окисел.

Марки и твердость легированных сталей в состоянии поставки.

После насыщения поверхности углеродом или одновременно углеродом и азотом детали подвергают закалке и низкому отпуску. Упрочненный слой должен иметь толщину не менее 0 5 — 0 6 мм. Толщиной слоя принято считать сумму толщин заэвтектоидной, эвтектоид-ной и переходной зон. На внутренней границе этой зоны твердость равна 50 НКСЭ, а на поверхности детали твердость должна быть равна 56 — 63 ННСЭ. Для того чтобы в упрочненном слое распределение углерода по толщине было равномерным, используют диффузионное выравнивание. Оптимальная структура упрочненного слоя представляет собой мар-тенситную матрицу с содержащимися в ней карбидами и остаточным аустенитом. Карбиды располагаются в виде мелких округлых частиц в заэвтектоидной зоне слоя на глубине 0 1 — 0 25 мм от поверхности. Эти карбиды увеличивают сопротивление деталей изнашиванию. Остаточный аустенит ускоряет приработку зубчатых пар, а в деталях под нагрузкой способствует релаксации напряжений, снижая их максимум. В этом отношении особенно эффективен азотистый аустенит, получаемый при нитроце-ментации. Допустимое количество остаточного аустенита определяется условиями эксплуатации деталей: при 10 — 15 % он не сказывается существенно на долговечности зубчатых колес, при количестве около 40 % — снижает контактную выносливость тяжел онагруженных зубчатых колес.

Возможно насыщение поверхности углеродом в результате разложения смазочного материала при высокой температуре.

После насыщения поверхности раздела водяными парами на ней возможно образование активных центров. При этом неупорядоченный гидролиз силоксановой связи ( вероятно, той, что ближе к стеклянной поверхности) приводит к появлению двух силаноль-ных групп, способствующих адсорбции гидрофильных соединений и, возможно, молекул воды. Гидролиз димерного слоя аппрета АПС ( рис. 9) возможен только в плоскости средней точки дим-еров.

Влияние интенсивности подачи воздуха на снижение концентрации ПАВ Прогресс ( а и Сопал ( б при их исходной концентрации.| Влияние высоты слоя жидкости на удаление хлорного сульфонола ( расход воздуха 0 31 л / мин на 1 л жидкости при его исходной концентрации.

Степень насыщения поверхности пузырьков воздуха ПАВ зависит от продолжительности контактирования пузырька с жидкостью ( а следовательно, от высоты столба жидкости) и от концентрации ПАВ в растворе.

Скорость насыщения поверхности при адсорбции зависит от природы растворенного вещества, и она повышается с увеличением длины неполярной части молекулы.

Процесс насыщения поверхности притира абразивным материалом называется шаржированием. Принудительное шаржирование притира производится при помощи стальных роликов и чугунных плит, самопроизвольное — в процессе доводки абразивными смесями со смазочно-охлаж-дающими жидкостями.

Степень насыщения поверхности сплава зависит от интенсивности реакции, протекающей на границе сплава с насыщающей средой. Скорость же проникновения зависит от самого элемента, температуры процесса и концентрации элемента на поверхности.

Цементация стали

Цементацией называют процесс, позволяющий насытить стальную конструкцию углеродом. Сердцевина остается мягкой, однако, благодаря слою покрытия прочность поверхности повышается. В процессе использования такие детали не подвергаются воздействию извне, не деформируются от ударов и не стираются.

Цементации подвергают элементы, выполненные из углеродистой либо легированной стали, содержание углерода в которой не менее 0,08% и не более 0,35%. Для цементации используют составы, богатые углеродом. Их называют карбюризаторами. Такие составы могут быть жидкими, твердыми и даже газообразными.

Цементация сталей происходит через нагрев деталей, предварительно упакованных в изготовленные из железа ящики, туда же помещается карбюризатор. Твердое вещество состоит из 70% древесного угля, 20–25% углекислого бария, а оставшаяся часть – углекислый кальций (3–5%).

Цементация осуществляется при температуре в 920–930 ОС, этот показатель позволяет сделать процесс максимально быстрым. Обогащение слоя стали происходит, когда частицы угля соприкасаются с поверхностью элемента. Передатчик углерода в данной ситуации – газовая среда. Правильно организованная цементация поверхностного слоя стальной детали продолжается от 5 до 14–15 часов.

Цементации в жидкой среде принято подвергать изделия небольшого размера, выполненные из углеродистой или легированной стали. Их на некоторое время опускают в соляные ванны, которые содержат расплавленные вещества:

  • соду;
  • поваренную соль;
  • карбид кремния.

Схема цементации стали

Газовая цементация

Суть газовой цементации в том, что деталь из легированной стали сначала необходимо нагреть, а затем прокалить в печи, температура в которой составляет от 920 до 950 ОС. В камеру печи на протяжении всего периода цементации подают газ с содержанием метана.

При использовании данного метода продолжительность цементации стальной детали уменьшается в несколько раз. Так, глубина слоя цементирования в 1,2 м может быть зафиксирована уже после 4–5 часов нахождения детали в газовой камере.

Газовая цементация сталей обладает явными преимуществами по сравнению с первыми двумя способами:

  • возможность регулировки процесса посредством изменения количественного и качественного состава газа;
  • отсутствие габаритного оборудования;
  • относительная чистота процесса, отсутствие угольной пыли;
  • возможность проводить закалку стали непосредственно в камере печи.

Газовая цементация достаточно экономична в сравнении с использованием твердых и жидких карбюризаторов.

Цианирование стали

Данный процесс несколько отличается от цементации и заключается в том, что поверхностный слой стальной элемента насыщается не только углеродом, но еще и азотом. В промышленности используют высоко- и низкотемпературное цианирование, в то время как цементация не позволяет производить несколько видов операций.

Высокотемпературное цианирование

Основная задача данного процесса – сделать деталь более твердой, износостойкой. Осуществляется манипуляция в ваннах, которые наполняют нейтральными солями: BaCl2, NaCl, Na2CO3 и некоторыми другими. Роль карбюризаторов выполняют соли KCN и NaCN, действующее вещество которых – циан. Он способствует тому, что стальная деталь насыщается азотом и углеродом. Процесс осуществляется при температуре до 900 ОС.

Чтобы слой, подвергнутый цианированию, стал максимально прочным, детали закаливают или в масле, или в воде, в течение полутора часов. Чтобы количество циана не уменьшалось (он постепенно выгорает), в ванну добавляют маленькие порции цианистых солей.

Низкотемпературное цианирование

Данный процесс уместен в том случае, если деталь должна соответствовать критериям повышенной прочности, износостойкости. Температура, необходимая для достижения поставленных целей, находится в диапазоне от 550 до 570 ОС (быстрорежущая сталь) и 510–520 ОС (высокохромистая сталь).

Осуществляется процедура в соляной ванне, содержимое которой представляет собой равные доли NaCN и KCN. Глубина полученного слоя – от 0,01 мм (при продолжительности цианирования в 10 мин) до 0,06 мм (при длительности процесса до 60 минут).

Процесс цементации

Целью цементация стали является повышение эксплуатационных характеристик детали. Они должны быть твердыми, износостойкими снаружи, но внутренняя структура должна оставаться достаточно вязкой.

Для науглероживания слоя наружной поверхности, детали нагревают с использованием печи до температуры в диапазоне 850С — 950С. При такой температуре происходит активизация выделения углерода, который начинает внедряться в межкристаллическое пространство решетки стали.

Цементация деталей достаточно продолжительный процесс. Скорость внедрения углерода составляет 0,1 мм в час. Не трудно подсчитать, что требуемый для длительной эксплуатации 1 мм можно получить за 10 часов.

Влияние на глубину слоя продолжительности цементации

На графике наглядно показано на сколько зависит продолжительность по времени от глубины наугрероживаемого слоя и температуры нагрева.

Технологически цементация сталей производится в различных средах, которые принято называть карбюризаторами. Среди них выделяют:

  • твердую среду;
  • жидкую среду;
  • газовую среду.

Поверхностный слой, получаемый цементацией

Стали под цементацию обычно берутся легированные или же с низким содержанием углерода: 12ХН3А,15, 18Х2Н4ВА, 20, 20Х и подобные им.

3.5.г Цинкование

Цинкование — процесс диффузионного насыщения поверхности детали цинком. Химико-термические методы цинкования включают в себя горячее цинкование или цинкование погружением, цинкование в порошке цинка — шерардизация, цинкование в парах цинка. Кроме этих методов используется электролитическое цинкование, металлизация напылением и нанесение цинкосодержащих красок. Цинкование — процесс, способствующий резкому повышению коррозионной стойкости. Повышение коррозионной стойкости при цинковании стальных деталей достигается за счет двух химических процессов: цинк, по отношению к железу являясь электроположительным металлом, тормозит коррозию поверхности детали. Под воздействием атмосферной влаги на цинкованной поверхности стальной детали образуется слой карбонатов и оксидов цинка, оказывающий также защитное действие. Температура цинкования зависит от способа проведения операции. Так, при цинковании в порошках температура процесса колеблется в пределах 370–430 °С, при цинковании погружением — 430–470 °С. Также широк интервал времен выдержек при цинковании. Если при цинковании в порошковых смесях слой толщиной около 0,1 мм достигается в среднем за 10 часов, то при цинковании погружением толщину слоя в 0,3 мм получают в первые 10 секунд процесса.

Цинкование в парах цинка осуществляется в восстановительной среде водорода при температурах 850–880 °С и давлении около 80 мм водяного столба. Время такого процесса достаточно велико и обычно составляет десятки часов. Толщина полученных слоев обычно не превышает 0,1–0,2 мм.

В зависимости от режима насыщения в диффузионном слое на поверхности железа может образоваться η-фаза (твердый раствор железа в цинке), далее слой интерметаллидных фаз FeZn13, FeZn7, Fe3Zn10, а ближе к сердцевине — твердый раствор цинка в железе.

Для повышения коррозионной стойкости различных изделий (листы, трубы, проволока, посуда, аппаратура для получения спиртов, холодильников, газовых компрессоров и т. д.) чаще применяют цинкование путем погружения изделий в расплав цинка.

4.Заключение

В данной работе я рассмотрел понятия термической и химико-термическая обработки сплавов

Термическую обработку применяют для изменения механических свойств и структуры металлов и сплавов. Основные способы термической обработки – это отжиг, закалка и отпуск. Выбор того или иного способа термической обработки зависит от состава сплава и тех свойств которые хотим получить, на основании анализа диаграмм состояния. Также необходимо учитывать динамику изменений структуры материалов.

К химико-термической обработке относятся такие виды обработки сплавов,как: цементация, азотирование, нитроцементация, цианирование, борирование, силицирование, диффузионная металлизация стали и др.

Одним из наиболее эффективных и универсальных процессов химико-термической обработки является борирование.

Борирование применяют для повышения износостойкости поверхностного слоя стального изделия, в частности, при повышенных температурах, повышения его твердости и износостойкости.

Изделия, подвергшиеся борированию, обладают повышенной до 800 °С окалиностойкостью и теплостойкостью до 900–950 °С. Твердость борированного слоя в сталях перлитного класса составляет 15 000–20 000 МПа.

Список используемой литературы

1. Волосатов В.А. Справочник по электрохимическим и электрофизическим методам обработки – М: Политехника, 1988. -265 с.

2. Каменичный И.С Краткий справочник технолога-термиста – М: Оборонгиз, 1963. -298 с.

3. Лахтин Ю.М., Рахштадт А.Г.Термическая обработка в машиностроении – М: ОЛМА-ПРЕСС, 1980. -426 с.

4. Сальников С.П. Краткий справочник машиностроителя – М: Машиностроение, 2001. -312 с.

5. Соломенцева Ю.М. Основы автоматизации машиностроительного производства – М: Машиностроение, 1999. -361 с.

6. Шаврин О.И. Технология и оборудование термомеханической обработки деталей машин – С-П: Символ-Плюс, 1996. -502 с.

7. www.naukaspb.ru

8. www.ucheba.ru

9. www.erudition.ru

10. www.chemport.ru

11 Травин О.В., Травина Н.Т. Материаловедение. – М.: Металлургия, 1989. – 360 с.

12. Лахтин Ю.М., Леонтьева В.П. Материаловедение: Учебник для машиностроительных вузов – 2-е изд., перераб. и доп. – М.: Машиностроение, 1980. – 493 с.

40.Азотирование стали.

Азотирование – химико-термическая обработка, при которой поверхностные слои насыщаются азотом.

При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.

При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.

Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий.

Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.

Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю.

Глубина и поверхностная твердость азотированного слоя зависят от ряда факторов, из которых основные: температура азотирования, продолжительность азотирования и состав азотируемой стали.

В зависимости от условий работы деталей различают азотирование:

для повышения поверхностной твердости и износостойкости;

для улучшения коррозионной стойкости (антикоррозионное азотирование).

В первом случае процесс проводят при температуре 500…560 o С в течение 24…90 часов, так как скорость азотирования составляет 0,01 мм/ч. Содержание азота в поверхностном слое составляет 10…12 %, толщина слоя (h) – 0,3…0,6 мм. На поверхности получают твердость около 1000 HV. Охлаждение проводят вместе с печью в потоке аммиака.

Значительное сокращение времени азотирования достигается при ионном азотировании, когда между катодом (деталью) и анодом (контейнерной установкой) возбуждается тлеющий разряд. Происходит ионизация азотосодержащего газа, и ионы бомбардируя поверхность катода, нагревают его до температуры насыщения. Катодное распыление осуществляется в течение 5…60 мин при напряжении 1100…1400 В и давлении 0,1…0,2 мм рт. ст., рабочее напряжение 400…1100 В, продолжительность процесса до 24 часов.

Антикоррозионное азотирование проводят и для легированных, и для углеродистых сталей. Температура проведения азотирования – 650…700 o С, продолжительность процесса – 10 часов. На поверхности образуется слой — фазы толщиной 0,01…0,03 мм, который обладает высокой стойкостью против коррозии. (–фаза – твердый раствор на основе нитрида железа Fe3N, имеющий гексагональную решетку).

Азотирование проводят на готовых изделиях, прошедших окончательную механическую и термическую обработку (закалка с высоким отпуском).

После азотирования в сердцевине изделия сохраняется структура сорбита, которая обеспечивает повышенную прочность и вязкость.

Суть технологии

Цианированием называют один из видов химико-термической обработки стали. Суть данного метода состоит в насыщении металлических поверхностей азотом и углеродом в температурном диапазоне от 530 до 950°С. По технологии это напоминает совмещение азотирования и цементации.

Цель цианирования состоит в улучшении свойств металла. Так, данная технология обработки повышает твердость, предел выносливости, износостойкость материала. Принцип цианирования основан на диффузии в структуру материала углерода и азота.

Данный процесс включает две стадии:

  • Сначала происходит насыщение верхнего слоя углеродом и азотом. Это продолжается 1 — 3 ч.
  • Далее абсорбированные в структуру материала атомы азота могут десорбироваться (выходить через поверхность, перейдя в газовую фазу). При этом насыщение углеродом продолжается и на втором этапе.

Ход рассматриваемого процесса определяется температурным режимом. Так, в диффузионном верхнем слое при возрастании температуры сокращается содержание азота, и увеличивается количество углерода, причем непрерывно либо до конкретного момента. На последних стадиях операции концентрация азота начинает сокращаться. Вследствие этого возможна фиксация насыщения данным элементом верхнего слоя стали при различных температурах. Сокращение содержания азота и повышение концентрации углерода при возрастании температуры происходит линейно. Однако это актуально лишь для верхнего слоя материала, а в нижележащих данная закономерность не наблюдается.

Кроме того, на особенности совместной диффузии воздействует количество азота, определяющее глубину распространения диффузии углерода и величину насыщения им слоя. Чрезмерное содержание азота может повлечь недостаточную скорость диффузии углерода. Это объясняется способствованием азота формированию карбонитридных образований на поверхности.

Глубина проникновения обоих элементов в сталь определяется ее микроструктурой. Однако в любом случае азот проникает на большую глубину, чем углерод.

Таким образом, результат работ определяется несколькими факторами. К ним относятся температура нагрева, концентрация азота и углерода, свойства среды и материала.

Поточный агрегат для цианирования

В результате на поверхности стали формируется двухслойное покрытие. Сверху расположен карбонитридный слой (Fe2(C, N)) толщиной 10 — 15 мкм. Он характеризуется высокой износостойкостью и меньшей хрупкостью в сравнении с чистыми нитридами и карбидами. Нижележащий слой представлен азотистым твердым ферритом (мартенситом). Общая толщина — 0,15 — 2 мм.

3 Ключевые достоинства нитроцементации и цианирования

Относительно невысокая температура процесса повышает эксплуатационный потенциал металлургических печей и оборудования, обеспечивает снижение уровня деформации, а также позволяет выполнять закалку стали сразу же после процедуры насыщения ее поверхности. Причем при закалке отпадает необходимость в остужении до малых температур обрабатываемого изделия.

Газовое цианирование гарантирует высокую устойчивость аустенита, что ведет к повышению степени прокаливаемости нитроцементованных зон металла. Такая высокая степень дает возможность осуществлять в масле закалку низколегированных заготовок.

Присутствие остаточного аустенита в стали увеличивает прочность детали на изгиб, ударную вязкость, пластичность металла. Кроме того, аустенит увеличивает усталостную прочность изделий за счет того, что он эффективно противодействует образованию усталостных нарушений.

Газовое цианирование, обладая всеми описанными достоинствами, стали активно применять для упрочнения валов и зубчатых колес, относимых к группе высоконагруженных элементов машин и механизмов. Они должны обладать высокой прочностью сердцевины (до 200 кГ/мм2) и при этом характеризоваться достаточной вязкостью. Цианирование обеспечивает именно такие результаты.

Отдельно добавим, что существует особое сорбционное цианирование – процесс, используемый для растворения в цианистых соединениях золота. Данная процедура производится в присутствии кислорода. Она позволяет добывать благородный металл из золотосодержащих руд с минимальными затруднениями.

Напоследок скажем, что одновременная загрузка азота и углерода (газовое цианирование или нитроцементация) имеет несколько недостатков. К ним обычно причисляют следующие явления:

  • ограничение глубины слоя показателем от 0,7 до 0,8 миллиметров;
  • потребность в постоянном корректировании азотирующей и науглероживающей возможности газовой атмосферы.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector