Алюминиевая посуда: мифы и правда об использовании

Алюминиевая посуда: плюсы и минусы использования

На рынке представлено большое количество алюминиевой посуды, что обусловлено ее доступностью, удобством и скоростью приготовления пищи. Так, алюминиевая сковородка обойдется дешевле, чем чугунная или нержавейка. Она гораздо легче по весу, но обладает прочным покрытием. Пища на такой сковородке разогревается очень быстро и равномерно.

Алюминиевая кастрюля: pexels.com

Однако многие по-прежнему опасаются выбирать кухонную утварь из «крылатого металла». Большинство популярных мифов об алюминиевой посуде связано с ее опасностью для нашего здоровья.

Среди других: алюминий очень хрупкий в быту и недолговечный, микроволновая печь и посудомоечная машина могут нанести повреждения изделиям из металла, такая посуда не пригорает и не ржавеет. Развенчать или подтвердить эту информацию помогут факты, о которых мы поговорим дальше.

Изобилие кухонных изделий удовлетворит любые запросы: тут и отличающиеся размером и формой алюминиевые кастрюли, и казаны, и чашки, и столовые приборы, сковородки с антипригарным, керамическим, мраморным покрытием, утварь для запекания и др. Состав тоже бывает абсолютно разным — от алюминия в чистом виде до примесей различных сплавов.

По способу изготовления различают два вида: литая посуда и штампованная. Последняя — дешевле, однако и прослужит недолго. В сравнении со штамповкой литая посуда устойчивее к деформациям и тяжелее, что связано с ее прочным дном.

Преимущества алюминиевой посуды такие:

  1. Легкие изделия из металла удобно хранить и использовать. Небольшой вес характерен даже для посуды крупных размеров.
  2. Благодаря высокой теплопроводности пища подогревается быстро, равномерно и практически не подгорает.
  3. Состав алюминиевой посуды делает ее стойкой к коррозии, и это правда.
  4. Доступность позволяет сохранить бюджет. Так, вы сможете приобрести набор алюминиевой посуды за стоимость чугунной сковородки.
  5. Современная посуда из алюминия порадует красивым и практичным дизайном.
  6. Нет противопоказаний по использованию изделий в духовке.
  7. Кухонный казан из алюминия станет отличным решением для приготовления пищи на огне во время похода или рыбалки.
  8. Посуда из алюминия не требует сложного ухода.
  9. Алюминиевые кастрюли не подгорают, поэтому идеально подходят для приготовления каш.
  10. Специалисты рекомендуют выбирать изделия из литого алюминия. Они дороже, но качественнее, а значит прослужат дольше.

Недостатки алюминиевой посуды следующие:

  1. Изделия подвержены окислению и различным механическим повреждениям. Использовать посуду из алюминия необходимо аккуратно, при сколах и царапинах на внутренней стороне — вовсе перестать.
  2. В металлических мисках и кастрюлях настоятельно не рекомендуется хранить приготовленную пищу.
  3. Не стоит готовить в алюминиевой посуде продукты с содержанием кислоты или щелочи, например квашенную капусту, рассольник, рыбу в маринаде, соусы или компот.
  4. Большинство индукционных плит не подходят для использования алюминиевых изделий.
  5. Посуду из металла нельзя использовать в микроволновой печи.

Методы защиты от коррозии

Особенно сильно коррозия проявляет себя во влажной среде, а так же при появлении т.н. «блуждающих» токов

Именно поэтому очень важно защищать поверхность алюминия с помощью покраски, анодировки, а стальные изделия, соприкасающиеся с ним необходимо оцинковывать, эмалировать или хотя бы обрабатывать грунтовкой в несколько слоев. Крепеж, применяемый в производстве алюминиевых конструкций должен быть как минимум оцинкованным, но желательно, а для фасадных конструкций просто необходимо, использовать крепеж из нержавеющей стали

Для антикоррозионной защиты алюминиевых конструкций применяют следующие методы:

Порошковая окраска

Порошковое покрытие представляет собой напыленный на поверхность изделия полимерный порошок, который запекается (полимеризуется) в специальной печи при определенной температуре, как правило 180-220°С.
Технология порошковой покраски состоит из трех этапов:

  1. Поверхность алюминиевого профиля обезжиривают и удаляют с нее все загрязнения
  2. Напыляют слой порошковой краски
  3. Запекание (полимеризация) порошкового покрытия в печи.

Порошковая покраска алюминиевого профиля и фурнитуры для светопрозрачных конструкций не только защищает металл от коррозии, но так же позволяет покрасить конструкцию в любой цвет по шкале RAL.

Анодирование профиля

Анодированое покрытие – это покрытие, которое создает на поверхности профиля устойчивую и не растворимую в агрессивных средах плёнку из окисла алюминия.

Анодирование позволяет создать такую равномерную толщину плёнки нерастворимой окиси на поверхности, которая уже не позволит контактировать алюминию с внешней средой и происходить дальнейшему окислению.

Технология построена таким образом:

  • Сначала профиль обезжиривают в кислоте (например, щавелевой).
  • Промывают в чистой воде.
  • Далее травление в щелочи для вытравливания поверхностных неравномерно окисленных слоев металла, вместе с которыми снимаются все инородные включения на поверхности.
  • Промывка в чистой воде.
  • Профиль погружается в ванну с раствором электролита. Здесь в течение 0,5-1,5 часов он подвергается анодированию. На поверхности профиля образуется пленка оксида алюминия.
  • Далее для получения цветного анодирования профиль перемещается в ванну с раствором соли какого-либо металла через которые снова пропускается ток. Цветные оттенки профиля зависят от продолжительности обработки. Минимально профиль обрабатывают 45 секунд (светлое шампанское), максимально — 15 минут (черный).
  • Изолирование (Ванна упрочнения поверхности) — процесс химического замещения, при котором окисел на поверхности металла превращается в химически более прочную гидратную форму, более устойчивую к воздействию окружающей среды и химических веществ. Покрытие приобретает особую прочность, стойкость к механическим повреждениям.
  • В заключение проводится сушка и упаковка.

Защита от контакта с другими металлами

Для того, чтобы алюминий не соприкасался с металлами, с которыми он может составить гальваническую пару, необходимо применять весь крепеж только из нержавеющей или оцинкованной стали.

Все стальные элементы, на которые монтируется конструкция – кронштейны, опорные узлы, анкерные пластины и т.д. – должны быть оцинкованы или прогрунтованны в несколько слоев. Так же для устранения прямого контакта алюминия и стали применяют паронитовые, резиновые, битумные прокладки.

Рис.3. Пример оцинкованного кронштейна с нержавеющим крепежом

Методы защиты от почвенной коррозии

Защиту от почвенной коррозии можно разделить на активную (электрохимическую) и пассивную (изоляция изделия от воздействия окружающей среды, специальные способы укладки и т.д.).

Для защиты металлоизделий от почвенной коррозии применяются самые разнообразные методы. Очень часто, особенно в высококоррозионых грунтах, применяют комплексную защиту от подземной коррозии.

Основные методы защиты металлоконструкций от почвенной коррозии: нанесение защитных покрытий и изоляция изделий, создание искусственной среды, электрохимическая защита, применение специальных методов укладки.

Нанесение защитных покрытий. Изоляция

Для защиты от почвенной (грунтовой) коррозии наиболее эффективным и широко используемым является нанесение защитных изоляционных покрытий. К таким покрытиям предъявляются следующие требования: оно должно быть сплошным, без трещин, царапин; иметь хорошую адгезию с металлоподложкой; быть химически стойким; отличаться высокими диэлектрическими свойствами; сохранять свои защитные свойства при воздействии положительных и отрицательных температур (от -50 до +50 °С); не содержать коррозионно-активных по отношению к основному металлу агентов; обладать высокой биостойкостью, механической прочностью.

Защитные покрытия могут быть полимерными и мастичные. К мастичным относятся каменноугольное, битумное. К полимерным – покрытия из липких изоляционных лент, расплавы, накатываемые эмали и т.д.

Покрытие, применяемое для защиты от почвенной коррозии,  должно полностью изолировать готовую конструкцию от воздействия окружающей среды. Для  изоляции подземных трубопроводов очень часто используют битумные покрытия различной толщины (6 мм – усиленное, 3 мм – обычное, 9 мм – очень усиленное). Широкое распространение получили петролатумные, цементные, каменноугольно-пековые, полиэтиленовые, поливинилхлоридные защитные покрытия. Последние отличаются отличными защитными и изолирующими способностями, долгим сроком службы, но не из самых дешевых. Самыми слабыми защитными свойствами обладает цементное покрытие.

Создание искусственной  атмосферы

Этот метод применяют достаточно редко, в основном для трубопроводов большой протяженности. Это связано с большими транспортными затратами, трудностью его реализации (необходимо большое количество работников, техники, достаточно много времени).

Протяженные подземные сооружения могут проходит через разные виды почв, что интенсифицирует  коррозионный процесс. Суть метода заключается в том, чтоб создать однородный грунт по всей протяженности конструкции (засыпая, например, весь трубопровод песчаным грунтом) либо уменьшить агрессивность почвы на определенных участках. Для этого кислые грунты могут известковать.

Электрохимическая защита металла от почвенной коррозии

Электрохимическая защита заключается в  принудительном создании катодной либо анодной поляризации. При совместном применении электрохимический защиты и защитных покрытий, затраты на первую весьма невелики.

В практике защиты металлов от почвенной коррозии очень часто применяется катодная защита. Металлоконструкции сообщают определенный отрицательный электрический потенциал, который затрудняет термодинамику окисления металла. Это существенно снижает (сводит к минимуму) скорость почвенной коррозии. Осуществить катодную поляризацию можно используя специальные установки: протекторные, катодные.

Протекторная защита заключается в подсоединении к изделию электродов из металла, который в данной среде более электроотрицателен. Для защиты стали от подземной коррозии протекторами могут служить алюминий, его сплавы, цинк, магний.

Катодная защита – создание катодной поляризации при помощи внешнего источника тока (генераторы постоянного тока, батареи, выпрямители). По всей протяженности трубопровода ставят специальные станции катодной защиты.

Специальные методы укладки

Очень часто при прокладке трубопровода, а также  других сооружений для защиты их от воздействия грунтовых вод, самого грунта используют специальные способы укладки.  Трубопровод или кабель может быть помещен в специальный коллектор (при этом кабель укладывают на неметаллическую подкладку), защитный кожух (часто из железобетонных плит или металла).

Технологии извлечения алюминия

Продуктом разрушения образований является глина, состоящая из каолинита. В ней иногда содержится примесь железа, придающая бурый цвет.

Несмотря на то, что в природе существует много минеральных образований, не все они являются рудным материалом для извлечения ценного компонента. Для добычи используют бокситовые руды, в которых содержится промышленная концентрация металла.

Алюминий образует минерал корунд, по твердости уступающий алмазу. Содержание в алюминиевом соединении Al2O3 примеси оксида хрома, титана и железа формирует драгоценные минералы рубин и сапфир.

  • Из обогащенной руды ценный компонент извлекают путем электролиза раствора оксида в расплавленном соединении фтора, натрия и алюминия (криолите). Такой способ позволяет проводить электролиз при температуре менее 1000 °C.
  • Благодаря низкой плотности расплава, жидкое соединение опускается на дно, что облегчает извлечение. При электролитическом получении металла для начала из глинозема выделяют чистый оксид Al2O3.
  • Перед использованием руду очищают от примесей соединений железа, кремния, кальция. При обжиге бокситов испаряется содержащаяся в минералах вода. Полученный материал разделяют при воздействии углекислого газа на соединение.

Широко применяется в производстве чистого алюминия химический способ. Он состоит в обработке руды щелочью NaOH при температуре 220 °C с получением Al (OH)2. В результате гидролиза раствора происходит окисление алюминия и осаждение его соединения.

Потом в результате использования углекислого газа получают соду и поташ. Для получения химически чистого материала технический материал нагревают в парах AlF3 с последующим охлаждением. В результате изменения температуры происходит выделение чистого алюминия.

Производство металла высокой чистоты предусматривают разработку новых технологий и создание условий, при которых металл может оксидировать без дополнительных затрат энергии.

Один из новых методов предусматривает синтез оксида алюминия высокой чистоты методом каталитического окисления металла кислородом воды с применением ультразвуковых колебаний, разработку автокаталитического способа получения субмикронного порошка с последующим формирование брикет высокой плотности.

Окрашивание алюминиевой продукции

Большую часть производимых изделий предохраняют нанесением слоя красящих веществ. Если красители растворены, то крашение называют мокрым. Если красители сухие, процедуру часто называют порошковым окрашиванием.

Мокрое окрашивание

Нанесение лакокрасочных слоёв возможно после защиты алюминия пассивирующим грунтом, в состав которых входят соединений цинка, стронция. Грунт наносят в две стадии на скрупулезно подготовленную металлическую основу. После полного испарения растворителя из грунтовочной смеси поверхность покрывают изолирующим внешним слоем масляного или глифталевого лака. Существуют функциональные лакокрасочные составы, защищающие от химических реагентов, от бензина, масел. Для получения цветных декоративных конструкций используют молотковые лаки. При некоторых технологиях защиты наносят бакелитовый лак под давлением, чтобы гарантированно заполнить все микропоры. Выбор покрытия обусловлен будущими условиями эксплуатации. Технология нанесения постоянно совершенствуется.

Порошковое окрашивание

Для использования этого метода металл также нужно очистить от слоя жира, других включений. Подготовку проводят погружением в щелочные, слабощелочные (почти нейтральные), кислотные растворы. Для повышения эффективности очистки иногда добавляют смачиватели.

Следующей стадией подготовки некоторых алюминиевых конструкций является формирование конверсионного слоя обработкой хроматными, фосфатными составами. Иногда используют циркониевые, титановые соединения. Необходимость этого этапа определяется специфическими особенностями изделия. Это вопрос компетенции технологов. Выполнение каждого этапа обработки чередуется с обязательным промыванием и сушкой материала.

Затем наносят полимер, выполняющий защитную функцию. Широко используют полиэфиры. Они образуют плотный слой, стойкий к химическому, механическому, термическому воздействию. Покрытия из полимеризованного уретана обладают большей твердостью. Применяют также эпоксидные, полиэфирно-эпоксидные, акриловые порошки – краски. Они формируют поверхность любого заданного цвета, структуры, способностью отражать световые лучи. Красящий порошок наносят электростатическим или трибостатическим методом.

Электростатически частицы пигмента в воздухе (флюиды) заряжают действием электродов. Трибостатически крупинки краски заряжаются благодаря силе трения, продуцируемой специальным пистолетом. Процесс реализуют в камерах. Неиспользованный порошок собирается, возвращается в исходное место. Стадия завершается полимеризацией при высокой температуре.

Оба вида окрашивания алюминия позволяют получать цвета, соответствующие международным стандартам. Некоторые производственные требования обуславливают необходимость последовательного сочетания двух методов: анодного оксидирования и окрашивания. Количество, суть используемых методов определяются специалистами.

Нивелирование влияния соседствующих материалов

Стимулировать коррозию алюминия могут металлы, материалы, находящиеся рядом. Для предотвращения этого эффекта рядом с алюминиевыми конструкциями позволительно нахождение только нержавеющей или оцинкованной стали. Могут предотвратить контакт прокладки из резины, паронита, битума. Алюминиевые конструкции не должны соприкасаться с бетоном, кирпичом, камнем, деревом. Для защиты рекомендован лак, любые другие изолирующие материалы.

Особенности чистки от подсолнечного масла

Вязкая жидкость — липидная смесь, не взаимодействующая с водой. Поэтому для удаления используются другие методы и средства. Подбираются такие вещества, которые смогут проникнуть внутрь молекул жира и удалить их с поверхности.

Горчица

Используется продукт в виде порошка. Сыпучая смесь разводится горячей водой. Пропорция следующая — на 1 л воды берется 2 ст. л. горчичного порошка. Ингредиенты смешиваются, чтобы не было комочков, и жидкость заливается в бутыль до самого горлышка. Через 2-2,5 часа жидкость сливается, а тара полощется чистой водой. Повторная процедура чистки улучшит эффект.

Мука

Сыпучая смесь используется из-за способности поглощать различную жидкость. Бутыль полностью заполняется водой, после чего добавляется мука. В результате должна получиться белая жидкость. Тара переворачивается кверху дном так, чтобы грязные места были покрыты раствором. Через время в сосуд добавляется горсть риса. После взбалтывания бутыль освобождается от содержимого. После мытья сосуда водой с добавлением моющего средства проводится полоскание.

Кипячение

Способ выручает в случае, если накопилось много грязных емкостей, а времени на чистку не хватает. Большая кастрюля заполняется грязными сосудами и заливается водой до самого верха. К воде добавляется небольшое количество моющего средства.

Кастрюля с тарой помещается на плиту на средний огонь. Кипячение должно проводиться в течение 25-35 минут. После выключения плиты содержимое кастрюли оставляют, чтобы оно остыло. Тара достается и моется чистой водой. Желательно вместо моющего средства брать кусок хозяйственного мыла.

7 идей, как можно почистить алюминиевые кастрюли

Уход за алюминиевой утварью — сложный процесс. Многие хозяйки не могут представить, как хорошо очистить пригоревшую алюминиевую посуду без жестких губок, металлических скребков и абразивного порошка. Но всего этого нужно избегать, ведь если переусердствовать с чисткой, можно повредить защитный слой посуды, и тогда она станет опасной для здоровья.

Также лучше не прибегать к моющим средствам на основе щелочи и хлора — они приводят к потемнению и порче материала. Следующие методы помогут очистить алюминиевую кастрюлю от нагара, жира, накипи и пригоревшей еды без применения химии и сохранить ее в отличном состоянии надолго.

Пищевые продукты

Темные пятна можно убрать с помощью кислоты натуральных продуктов. Пучки щавеля следует разложить на дне алюминиевой кастрюли, залить водой и кипятить 30 минут на медленном огне, накрыв крышкой. Аналогичным эффектом обладают простокваша, кефир и огуречный рассол. Оставив такую массу в кастрюле на ночь, получится обновить ее без особых усилий.

Можно натереть подгоревшую поверхность половиной яблока, дать кислоте подействовать, затем промыть губкой с жидким мылом. Для очистки кастрюли от пригоревшей еды, нужно варить в ней 2-3 разрезанных луковицы в течение получаса. Следует предварительно очистить лук от шелухи, иначе металл может потемнеть.

Лимонная кислота

С ее помощью можно легко избавиться от нагара на алюминиевой утвари. Очистить кастрюлю внутри можно простым способом: развести 2 ст. л. лимонной кислоты в 1,2 л воды и кипятить 15-25 минут в загрязненной посуде. Эти же простые методы помогут и в борьбе с накипью на изделиях из алюминия. Нужно 15 г лимонной кислоты растворить в 1 л воды, довести до кипения, и сняв крышку и подержать кастрюлю на огне 5-10 минут. Когда раствор немного остынет, добавить 2 ст. л. моющего средства и еще раз прокипятить, после чего удалить остатки накипи мягкой тканью.

Уксус

Чтобы убрать въевшуюся грязь, достаточно залить посуду 1,5 л воды и 1,5 стаканом уксуса, довести до кипения, после чего тщательно промыть и вытереть. Можно просто оставить такую смесь в очищаемой емкости на ночь. Утром останется промыть кастрюлю губкой с моющим средством и 1 ст. л. нашатырного спирта.

Соль

Кастрюлю можно почистить от нагара снаружи таким способом: смешать 2 ст. л. крупной соли и 1 ч. л. воды, потереть смесью поверхность с помощью губки. Чтобы очистить сгоревшую кастрюлю внутри, необходимо смешать в ней 900 мл воды с 2 ст. л. соли и кипятить 20 минут. Простейший метод удаления пригоревшей пищи — засыпать мокрую кастрюлю солью, дать постоять 2-3 часа и снять грязь губкой. Так можно избавиться от пригоревшего варенья, не царапая посуду жесткой щеткой.

Сода

Одно из наиболее доступных и безопасных средств, чем можно качественно очистить пригоревшую кастрюлю снаружи и изнутри — это сода. Выбирая между простой и кальцинированной, предпочтение лучше отдавать последней. Отбелить почерневшую с внешней стороны посуду можно, прокипятив ее в глубокой таре с добавлением 1 стакана соды и 2 ст. л. уксуса 9% на 5-6 л воды. Загрязненную утварь погружают в раствор и кипятят на протяжении 1 часа

Важно выбрать такую емкость, в которой требующая чистки кастрюля будет полностью покрыта водой

Отмыть алюминиевую кастрюлю от гари поможет натирание ее содой, слегка разведенной водой. Этот способ подойдет, если посуду нужно отчистить от нагара снаружи.

https://www.youtube.com/watch?v=urWW71ZxU5k Video can’t be loaded: Как очистить КАСТРЮЛЮ от нагара алюминиевую, эмалированную. Как отмыть кастрюлю пригоревшую (https://www.youtube.com/watch?v=urWW71ZxU5k)

Клей ПВА

Если алюминиевая посуда подгорела сильно, следует довести 3 л воды до кипения, добавить туда 1/3 натертого хозяйственного мыла и 1 ст. л. клея ПВА. Налить смесь в кастрюлю и кипятить 45-55 минут под закрытой крышкой. После процедуры остатки грязи без усилий отмоются мыльным раствором. Этот рецепт эффективен и от въевшегося жира.

Можно прокипятить изделие в большой емкости, разведя 1/2 стакана клея в 6 л воды. После этой процедуры размякнут все слои грязи и их будет легко удалить даже из труднодоступных мест.

Активированный уголь

С пригоревшими продуктами, особенно молоком, прекрасно борется активированный уголь. Чтобы очистить пригоревшую кастрюлю из алюминия, измельченными таблетками угля засыпают дно кастрюли, оставляют на 40 минут, затем добавляют холодную воду и отстаивают еще столько же времени. После этого емкость легко очищают губкой с моющим средством.

Аналогичный эффект имеет и зубной порошок. Для борьбы с застоявшимся нагаром нужно натереть им кастрюлю, предварительно смочив водой, чтобы началась реакция, и оставить на ночь. Утром размякшую грязь удаляют салфеткой и ополаскивают посуду мыльным раствором.

Сферы использования металла и его соединений

Значительное количество алюминия находится в фарфоре, кирпиче, цементе. По масштабам использования сплавы металла уступают место железу. Широкое применение алюминиевых материалов в различных отраслях связано с рядом физических и химических параметров:

  • невысокая плотность;
  • металл не ржавеет, обладает устойчивостью к коррозии;
  • имеет высокую электропроводность;
  • легко поддается штамповке, прокату и обладает ковкостью;
  • пластичен и прочен;
  • на поверхности алюминиевых сплавов легко наносятся декоративные и защитные покрытия.

При добавлении разных лигатурных компонентов сплавы на основе алюминия приобретают новые свойства, формируя интерметаллические соединения или твердые растворы.

Не все материалы способны образовывать оксидные пленки даже принудительно. Для сохранения антикоррозионных свойств материала кислотно-щелочной баланс должен соответствовать диапазону от 6 до 8 единиц.

Чистый алюминий практически не подвергается воздействию агрессивной среды. Даже тонкое покрытие поверхности металлом без примесей способно предотвратить реакцию.

Основную массу металла используют для получения легких сплавов:

  • дюралюминия, в котором находится 94% алюминия, 4% меди, по 0,5% железа, марганца, кремния и магния;
  • силумина — до 90% основа, до 14% кремний и натрий.

В металлургии химический элемент используют в качестве лигатурной добавки в составы на основе меди, никеля, железа, магния. Такие соединения широко применяются в автомобилестроении, в быту, авиационной технике.

Из сплава с основным содержанием алюминия был изготовлен первый искусственный спутник планеты Земля. В виде порошка его используют как компонент ракетного топлива. Эта идея принадлежит Ф. А. Цандеру. Сплав металла с цирконием используют в строительстве ядерных реакторов, изготовлении взрывчатых материалов.

Электрохимическим способом на поверхности ювелирной бижутерии наносят защитные окрашенные пленки, по внешнему виду напоминающие золото. Сплав алюминия с золотом, обладающий насыщенным фиолетовым цветом, используют в качестве вставок в украшения.

Готовить в посуде из алюминия можно нейтральные жидкости, например, воду или молоко. Кислые блюда реагируют с металлом и приобретают неприятный вкус в результате разрушения оксидной пленки.

Металл можно расплавить в домашних условиях с целью изготовления различных деталей методом литья. В промышленном производстве в качестве материала для форм используют металл с высшей температурой плавления, а в кустарных условиях для этой цели применяют гипс.

Алюминий – широко распространенный в промышленности и быту металл. Окисление алюминия на воздухе не происходит. Его инертность обусловлена тонкой оксидной пленкой, защищающей его. Однако под влиянием определенных факторов из окружающей среды этот метал все же подвергается разрушительным процессам, и коррозия алюминия – не такое уж и редкое явление.

Коррозия алюминия на воздухе (атмосферная коррозия алюминия)

Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо Al2O3•H2O.

Реакция взаимодействия алюминия с кислородом:

Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.

Алюминий достаточно стоек как на чистом сельском воздухе, так и находясь в промышленной атмосфере (содержащей пары серы, сероводород, газообразный аммиак, сухой хлороводород и т.п.). Т.к. на коррозию алюминия в газовых средах не оказывают никакого влияния сернистые соединения – его применяют для изготовления установок переработки сернистой нефти, аппаратов вулканизации каучука.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector