Применение легированных сталей. классификация и маркировка сплавов

Разница между легированием и примесями

Обычные легирующие добавки — это компоненты, которые вводят в металл в значительных количествах — более 0,10%. Они вызывают изменение кристаллической решётки железа, образуя растворы внедрения, повышают прочностные и других свойства железа (матрицы).

В качестве металлов для легирования используют:

  • хром Cr;
  • марганец Mn;
  • никель Ni;
  • алюминий Al;
  • молибден Mo;
  • кобальт Co;
  • титан Ti;
  • цирконий Zr;
  • медь Cu и другие.

Их внедряют в сталь в разных количествах и сочетаниях.

Примеси

Существует деление вредных примесей на обычные и остаточные. К обычным вредным примесям относят те, содержание которых в металле можно уменьшить во время плавки – это фосфор, сера, кислород, азот, углерод, т. е., неметаллы.

Под остаточными вредными примесями принято понимать такие, содержание которых невозможно снизить во время плавки ни при окислительном рафинировании, ни при обычном легировании. Это характерно для химических элементов, имеющих растворимость в жидком железе. В производственной практике обычно встречающимися вредными остаточными примесями являются:

  • медь;
  • никель;
  • олово;
  • сурьма;
  • мышьяк.

2 О достоинствах и недостатках ЛС

Описываемые стали характеризуются немалым количеством эксплуатационных и иных преимуществ. Такие сплавы имеют:

  • повышенное сопротивление деформациям (пластическим);
  • высокую твердость;
  • стабильную аустенитную структуру, обеспечивающую отличные показатели прокаливаемости металла;
  • высокий уровень сопротивления хладоломкости и вязкости;
  • уникальные технологические качества;
  • минимальную вероятность коробления либо появления иных дефектов при проведении закалки стали.

Легированный сплав

Имеют легированные сплавы и неизбежные недостатки. Они:

  • Склонны к ликвации дендритного типа. Этого можно избежать, если провести диффузионный отжиг металла.
  • Содержат остаточный аустенит (это, в частности, касается высоколегированных сталей). Он уменьшает (и существенно) сопротивляемость усталости и твердость сплава.
  • Имеют определенную склонность к отпускной обратимой хрупкости и к появлению флокенов – ориентированных в разные стороны трещин небольших размеров. От подобных дефектов следует избавляться посредством замедления охлаждения стали и снижением уровня водорода в ней в процессе выплавки.

Сварка легированных сталей: особенности

Легированные сплавы обладают хорошей пластичностью, поэтому из них можно изготовить сложные конструкции методом сварки. По причине различного содержания добавок каждый тип легированных изделий имеет свои особенности.

Сварка низколегированных сталей

Особенность сварных соединений низколегированных сталей заключается в высокой сопротивляемости холодным трещинам и хрупкому разрушению. Но, такие свойства соединительного шва можно достичь только при правильном сваривании.

Если процесс предварительного нагрева будет нарушен либо сварной шов подвергнется слишком быстрому остыванию металл может получить в местах соединения микроскопические повреждения, которые значительно уменьшат прочность всей конструкции.

Низколегированные стали марки 10Г2СД, а также 14ХГС и 15ХСНД свариваются с использованием аппарата постоянного тока с обратной полярностью. Электроды для сваривания должны иметь фтористо-кальциевое покрытие. Величина сварочного тока должна точно соответствовать типу электрода, толщине металла и типу сплава. Несоблюдение этого требования также отразится на качестве сварного шва и, как следствие, на прочности изготавливаемой конструкции.

Сварка низколегированной стали должна осуществляться без перерыва, чтобы весь шов был выполнен без при температуре металла не менее 200 градусов. Средняя скорость сварки составляет 20 м/ч, при напряжении 40 В и силе тока 80 А.

Видео:

Сварка среднелегированных сталей

При изготовлении конструкций из среднелегированных сталей необходимо использовать сварочные материалы, в которых содержание легирующих элементов должно быть меньше, чем в свариваемом материале.

Только при использовании таких материалов можно добиться получения шва с высокой устойчивостью к деформации. Если при изготовлении изделий из среднелегированных сталей толщина листа не превышает 5 мм, то высокого качества соединения можно достичь при использовании аргонодуговой сварки.

Если для соединения деталей используется газовая сварка, то в качестве источника горения следует применять ацетилен в смеси с кислородом.

Сварка высоколегированных сталей

Если для производства металлических деталей применяется высоколегированная сталь, то в этом случае следует применять сварочное оборудование с минимальным тепловым захватом материала. Это необходимо для снижения вероятности коробления металла во время сварки, по причине большого содержания в составе металла различных примесей.

Электрическая сварка высоколегированных сплавов осуществляется с использованием электродов с фтористокальциевым покрытием. В этом случае удаётся добиться высоких показателей механической и химической прочности сварного шва.

Применение газовой сварки при изготовлении конструкций из высоколегированных сталей нежелательно. В исключительных случаях возможно использование газовой сварки для соединения жаропрочного высоколегированного стального листа толщиной не более 2 мм.

Видео:

Заключение

Применение легированных сплавов при изготовлении металлических деталей и конструкций позволяет придать ним необходимые физические качества. При работе с такими металлами обозначение легирующих элементов в стали помогает подобрать заготовку с нужными параметрами, из которой затем будет изготовлена конструкция.

При использовании таких сплавов необходимо не только знать их состав, но и способы соединения при помощи сварки. Поэтому если следовать рекомендациям изложенным в данной статье, то можно получить высококачественное изделия с заданными параметрами.

Основные цели легирования

Слово «легирование» происходит от немецкого «legieren» (связывать, соединять). Положительное воздействие легирующих компонентов на свойства стали связано с обеспечиванием протекания двух физико-химических процессов.

Процесс №1

Образование термодинамических устойчивых растворов замещения, сопровождающееся замещением части атомов (ионов) железа в его кристаллической решётке (ионами) легирующего элемента. Это ведёт к искажению кристаллической решётки железа, поскольку радиусы ионов (катионов) легирующих элементов отличаются от радиуса катионов железа, что повышает твёрдость и прочность железа с сохранением его пластичности.

Процесс №2

Возникновение прочных и практически нерастворимых в жидком железе химических соединений между введёнными в расплавленный металл легирующими добавками и растворёнными в нём неметаллами (кислород, азот, сера, углерод и др.).

Результатами образования таких соединений являются:

  • снижение остаточного содержания в расплавленном металле растворенных неметаллов, ухудшающих его качество;
  • уменьшение общего объёма вредных примесей (растворённых и в виде неметаллических включений) в стали.

А также происходит выделение (выпадение) из жидкого металла таких мелких неметаллических включений, которые служат центрами кристаллизации и приводят к получению мелкозернистой первичной и вторичной структуры стали. Благодаря этому она имеет лучшую пластичность, малую анизотропность свойств после прокатки и т. д. Выделяющиеся во время кристаллизации мелкие неметаллические включения обладают склонностью скапливаться на поверхности растущих кристаллов, понижая скорость роста граней, а это, в свою очередь, уменьшает зернистость стали.

Машиностроительные цементируемые и азотируемые стали.

Цементацию (азотирование) широко применяют для упрочнения средне размерных зубчатых колес, валов коробки передач автомобилей, валов быстроходных станков, шпинделей и др. Для деталей обычно используют низкоуглеродистые (0,15—,25 % С) стали. Содержание легирующих элементов в этих сталях не должно быть слишком высоким, но должно обеспечивать требуемую прокаливаемость поверхностного слоя и сердцевины.

После цементации, закалки и низкого отпуска цементованный слой должен иметь твердость 58-62 НRС, а сердцевина 30-42 НRС. Сердцевина должна обладать высокими механическими свойствами, особенно повышенным пределом текучести, должна быть наследственно мелкозернистой. Для измельчения размера зерна цементируемые стали микролегируют ванадием,титаном, ниобием, цирконием, алюминием и азотом, образующими мелкодисперсные нитриды и карбонитриды, или карбиды, задерживающие рост зерна аустенита.

Цементируемые стали — 20Х, 18ХГТ, 20ХГР, 25ХГМ, 12ХН3А и др.

Машиностроительные улучшаемые стали называются улучшаемыми потому, что подвергаются термической обработке, заключающейся в закалке и отпуске при высоких температурах – улучшению. Это среднеуглеродистые стали (0,3-0,5 % С). Они должны иметь высокую прочность, пластичность, высокий предел выносливости, малую чувствительность к отпускной хрупкости, должны хорошо прокаливаться. Применяются для изготовления коленчатых валов, валы, оси, штоки, шатуны, ответственные детали турбин и компрессорных машин.

Марки – 35, 45, 40Х, 45Х, 40ХР, 40ХН, 40ХН2МА и др.

Рессорно-пружинные стали – марки 70, 65Г, 60С2, 50ХГ, 50ХФА, 65С2Н2А, 70С2ХА и др. Эти стали относятся к классу конструкционных.

Эти стали должны иметь особые свойства в связи с условиями работы пружин и рессор, которые служат для смягчения толчков и ударов. Основное требование – высокий предел упругости и выносливости. Этим условиям удовлетворяют углеродистые стали и стали, легированные элементами, повышающими предел упругости (кремний, марганец, хром, ванадий и вольфрам). Особенностью термической обработки рессорных листов и пружин является проведение после закалки отпуска при температуре 400-500С. Такая обработка позволяет получать наиболее высокий предел упругости.

Шарикоподшипниковые стали – ШХ15 (0,95 –1,05 % С и 1,3-1,65 % хрома). Заэвтектоидное содержание углерода и хром обеспечивают получение после закалки высокой равномерной твердости, устойчивой после истирания, необходимой прокаливаемости и достаточной вязкости. Термическая обработка включает отжиг, закалку и отпуск. Отжиг снижает твердость и позволяет получать мелкозернистый перлит. Закалка проводится при 830-860С, охлаждение в масле, отпуск 150-160 С. Твердость НRС 62-65, структура – бесструктурный мартенсит с равномерно распределенными мелкими карбидами.

Для изготовления деталей крупногабаритных подшипников (диаметром более 400 мм), работающих в тяжелых условиях при больших ударных нагрузках, применяют цементуемую сталь 20Х2Н4А (температура цементации 930-950С в течение 50-170 ч, толщина слоя 5-10 мм).

Износоустойчивые стали – 110Г13Л (0,9-1,3 % С, 11,5-14,5 % марганца). Литая аустенитная сталь, после литья состоит из аустенита и избыточных карбидов (Fe,Mn)3С, выделяющихся по границам зерен, что снижает прочность и вязкость стали. Поэтому литые изделия закаливают от 1100С в воде. При этом карбиды растворяются и структура становится стабильной аустенитной.

Сталь имеет высокую прочность и сравнительно малую твердость. В процессе работы при ударных нагрузках происходит упрочнение (наклеп) поверхности стали при пластической деформации, в результате в поверхностном слое образуется мартенсит. Именно он обеспечивает высокую износостойкость. По мере износа внешнего слоя, мартенсит образуется в следующих слоях. Применяют для трамвайных стрелок, щек камнедробилок, козырьков ковшей, черпаков и т.д.

При циклическом контактно-ударном нагружении и ударно-абразивном изнашивании применяют сталь 60Х5Г10Л, претерпевающую при эксплуатации мартенситное превращение.

Лопасти гидротурбин и гидронасосов, судовых гребневых винтов, работающих в условиях изнашивания при кавитационной эрозии, изготавливают из сталей с нестабильным аустенитом 30Х10Г10 и 0Х14АГ12, испытывающих при эксплуатации частичное мартенситное превращение.

Сталь различных способов производства

В зависимости от способа производства стали отличаются по содержанию примесей, чем и обусловлено различие в их свойствах.

Сталь подразделяют на бессемеровскую, мартеновскую, кислородно-конвертерную и электросталь.

Самый прогрессивный способ получения стали – конвертерный (продолжительность плавки – 30-60 мин.).

Длительность мартеновской плавки до 11 часов.

Сталь получают из чугуна, содержащего большое количество Mn, P, S, C, Si.

При производстве сталипримеси удаляют, окисляя их и переводя в шлак, снижают содержание углерода.

Большое количество окислов FеО в стали ухудшают ее качество. Для снижения количества окислов (т.е. содержания кислорода) сталь раскисляют, путем добавления ферромарганца – FeMn, ферросилиция – FeSi, а также Al, Ti.

Эти раскислители имеют сродство к кислороду больше, чем железо.

В зависимости от раскисления стали делят на:

спокойную сталь – раскисляют FeMn, FeSi, Al или Ti. Обозначают сп.

кипящую сталь – раскислена только FеMn. Обозначают кп

полуспокойную сталь – раскислена FеMn и Al, т.е. характеризуется промежуточным раскислением. Обозначают пс

Стали отличаются по химическому составу в зависимости от раскисления:

пс – 0,05 – 0,10% Si,

– обыкновенного качества ( 0 С.

Стали 4-ой категории – по механическим свойствам, химическому составу и ударной вязкости при -20 0 С.

Стали 5-ой категории – по механическим свойствам, химическому составу, ударной вязкости при -20 0 С и после старения.

Таблица № 1 Состав сталей и механические свойства сталей обыкновенного качества (ГОСТ 380-88)

0,23

Массовая доля Механические свойства
Марка стали %Si %Mn ув,н/мм 2 ут,н/мм 2 д, % KCU Дж/см 2 (кгс·м/см 2 )
Ст 0 0,05 0,25-0,5 300 22
Ст 1 сп 0,06 –0,12 0,15-0,30 0,25-0,5 305-380 34
Ст 3 кп 0,14 –0,22 0,07 0,3-0,6 380-460 235 27
Ст3пс 0,14 –0,22 0,05-0,15 0,4-0,65 370-480 345 26 108при -20 0 С
Ст3сп 0,14 – 0,22 0,12-0,30 0,4-0,65 380-490 355 26 98при -20 0 С
Ст6сп 0,38 – 0,49 0,15-0,35 0,5-0,8 590 315 15

Для сталей марки Ст0 (беззаказка):

S 2

В сталях 08, 10, 15, 20 – Mn ≈ 0,35 – 0,65%.

Конструкционные легированные стали

Толстостенные трубы из конструкционной стали

Классификация этого вида низкоуглеродистого железа достаточно обширна. Среди параметров, определяющих сортировку конструкционной стали присутствуют:

форма и габариты;

процентная масса легирующих элементов;

химический состав и базовая примесь;

качество металла, его поверхности (две различные категории);

вид обработки.

Разобраться какие стали называются легированными (конструкционный металл) поможет ГОСТ 4543-71. Соответственно этому документу изготовляется конструкционное низкоуглеродистое железо. Таким образом, вопрос «дайте определение легированных сталей», сводится к ассортименту добавок, вводимых в металл для улучшения его характеристик.  Это: азот, хром, кремний, бор, тугоплавкие металлы. Дополняют ряд никель, медь, алюминий и прочие цветные металлы.

Рассматривая конструкционные легирующие стали, следует обратить внимание на такой критерий, как общее содержание примесей. Он сортирует металл на три класса:. высоколегированный – доля добавок более 10%;

высоколегированный – доля добавок более 10%;

умеренный от 2.5 до 10%;

низкое содержание примесей — менее 2,5%.

Во всех случаях указывается массовый процент легирующей добавки.

Химический состав – еще один фактор классификации. Классификация конструкционной легированной стали, разделяющий ее на качественную, высококачественную, маркируемую литерой «А» и металл электрошлакового переплава — особо высококачественная разновидность с ведущей «Ш» в маркировке.

Аналогично качеству химического состава, различают три категории легированной конструкционной стали, соответственно качеству обработки поверхности. Дополнительный критерий сортировки в этом случае – вид обработки. Это, во-первых, кованый или горячекатаный прокат, калиброванный металл, а также сталь со специальной отделкой поверхности.

Уровень термической обработки отражает маркировка легированных сталей. В частности, литера «Т» говорит о термически обработанном металле, «Н» – нагартованном. Обозначение легирующих элементов в стали указывается после содержания углерода (первая пара цифр).

Нагартованный металл

Дополнительные обозначения легированных сталей указывают на следующие особенности:

  1. По степени раскисления. Параметр напрямую зависит от процентного вхождения кремния. Стали содержащие не более 0.07% называют кипящими, свыше 0.12% — спокойными. Интервал 0.07 – 0.12% соответствует полуспокойным маркам металла.
  2. Непосредственно маркировка. Формируется из нескольких элементов. Первый – буквенное обозначение Б или В (группа А не обозначается) с последующим «Ст». Например, Ст1кп2; БСт2пс; ВСт6сп3. Второй – цифра, соответствующая номеру ГОСТ. Третий символ: буква «Г», присутствие которой указывает на повышенно содержание марганца. Далее идут степень раскисления металла и номер категории стали.
  3. Применение. Параметр, указывающий, где используют легированные конструкционные стали. Маркировки Ст1, Ст2 отводятся под проволоку и изделия из прутков: гвозди или заклепки. Крепежные детали обозначаются Ст3, Ст4 а осевые элементы или валы под слабой нагрузкой – Ст5, Ст6.

Альтернативная классификация конструкционных сталей по сфере использования, разделяет металл на подшипниковый, рессорно-пружинный и теплоустойчивый. В первых двух случаях наименования говорят сами за себя, тогда как последний вариант соответствует металлу, сектор применения которого — энергетическое машиностроение. Подобные конструкционные стали используются в производстве котлов, паронагревателей или сосудов.

1 Маркировка – требования ГОСТа

Сталей много, поэтому их обозначение должно как-то систематизировать. Этим и занимались составители ГОСТ 4543-71. Шифр для сплавов с особыми свойствами начинается с буквы, которая характеризует их группу. В маркировке на первой позиции символ «Ж», «Х» либо «Е» говорит о нержавеющих, хромистых или магнитных сплавах. А вот нержавеющие хромоникелевые стали маркируются буквой «Я». Для шарикоподшипниковых и быстрорежущих материалов характерны обозначения «Ш» и «Р».

Если сплав относится к высококачественным либо особо высококачественным, то он обозначается символами «А» и «Ш» соответственно, которые расположились в конце шифра. Качественные стали не имеют особых обозначений. Нагартованный либо термически обработанный прокат также маркируется, в первом случае буквой «Н», во втором – сочетанием «ТО». Более подробно химический состав каждой марки стали указывается в ГОСТе или справочной литературе.

Нагартованный прокат

Теперь мы остановимся на принципах маркировки, ознакомившись с которыми, вы сможете узнать приблизительный состав сплава, не заглядывая в литературу. Первым указывается количество углерода. Причем это значение берется в сотых долях, т. е. 30ХГС содержит приблизительно 0,3% С. Далее следуют буквенные обозначения конкретного элемента. Азот (N), ниобий (Nb), вольфрам (W), марганец (Mn) и медь (Cu) обозначаются первыми буквами русского алфавита: А, Б, В, Г, Д соответственно.

Символы «К», «М», «Н», «П», «Р», «С», «Т» свидетельствуют о наличии в составе сплава кобальта (Co), молибдена (Mo), никеля (Ni), фосфора (P), бора (B), кремния (Si) и титана (Ti). А вот если вы увидите букву Ц, то речь идет о цирконии (Zr). Элементы Ванадий (V), хром (Cr) и алюминий (Al) зашифрованы в буквах Ф, Х, Ю. Цифры, стоящие после каждой буквы, показывают процентное содержание конкретной добавки. Если после буквенного обозначения никакое число не указывается, значит, содержание этого элемента не превышает 1,5%. Рассмотрев особенности маркировки легированных сталей по ГОСТ 4543–71, остановимся немного и на их характеристиках.

Углеродистые стали.

По составу углеродистые стали в зависимости от содержания углерода делятся на три группы:

1) низкоуглеродистые — с содержанием углерода до 0,3 %;

2) среднеуглеродистые — до 0,7% углерода;

3) высокоуглеродистые — больше 0,7 % углерода.

По качеству стали классифицируют на обыкновенные, качественные и высококачественные, в зависимости от содержания примесей.

Если содержание серы находится в пределах 0,04-0,06 %, а фосфора от 0,04 до 0,08 %, то стали относят к обыкновенному качеству и маркируются буквами Ст. Если же содержание серы и фосфора меньше и находится в пределах 0,03—0,04 %, то такие стали относят к качественным. Углеродистые качественные конструкционные стали маркируются двумя цифрами, которые указывают содержание кислорода в сотых долях процента.

При содержании примесей в пределах, как правило, меньших 0,03 %, полагают, что стали обладают высоким качеством. Для обозначения их высокого качества используют букву А при маркировке углеродистых и большинства легированных сталей, ее ставят в конце обозначения маркиПод качеством стали понимают совокупность свойств, зависящих от способа ее производства. В зависимости от требований, предъявляемых к составу и свойствам стали, углеродистые стали делятся на ряд групп.

Сталь обыкновенного качества поставляется потребителям в соответствии с ГОСТ 380—71 и ее подразделяют на три группы: к группе А — относят стали с гарантируемыми механическими свойствами (поставляемая сталь не подвергается термической обработке); к группе Б — стали гарантированного состава (они подвергаются горячей обработке у потребителя); к группе В — стали сгарантированными составами и механическими свойствами (для сварных конструкций).

Для сталей группы А (Ст1 — Ст6) требования к механическим свойствам изменяются в определенном ин­тервале (σ 0,2 от 200 до 300 МПа; σВ — от 310-410 до 500-600 МПа, а δ от 22 до 14 %, соответственно). Прочность стали тем выше, а пластичность стали тем ниже, чем больше номер ее подгруппы. Так сталь Ст6 прочнее стали СтЗ. Аналогичные цифры указываются и для сталей группы Б и В (например БСтЗ). Но букву А в маркировке стали обыкновенного качества не указывают, так как ее используют для маркировки так называемых автоматных сталей, обрабатываемых на станках автоматах.

По характеру раскисления стали делят на спокойные, полуспокойные и кипящие. Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают без газовыделения (спокойно). Кипящие стали раскисляют только марганцем, содержание кислорода в них повышенное. Взаимодействуя с углеродом, кислород образует пузыри СО, которые при выделении в процессе кристаллизации создают впечатление кипения. Полуспокойные стали раскисляют марганцем и кремнием, по своему поведению они занимают промежуточное положение между кипящими и спокойными.

Для облегчения понимания правил маркировки углеродистых сталей приведем конкретные примеры. Сталь марки ВСт3пс означает, что эта конструкционная углеродистая сталь обыкновенного качества, третьей категории, поставляемая по химическому составу и свойствам, полуспокойная. Маркировка же 08кп означает, что это — качественная конструкционная углеродистая сталь, содержащая 0,08 % С, кипящая. Марка 40А, означает, что сталь содержит около 0,40 % С и относится к сталям высокого качества.

Углеродистые инструментальные стали содержат 0,7 – 2,3 % углерода. Они маркируются буквой У и цифрой, показывающих содержание углерода в десятых долях процента ( У7, У8, У9,….У13). Буква А в конце марки показывает, что сталь высококачественная (У7А, У8А,….У13А). Твердость качественных и высококачественных сталей одинакова, но высококачественные стали менее хрупки, лучше противостоят ударным нагрузкам, дают при закалке меньше брака. Высококачественная сталь выплавляется в электрических печах, а качественная = вмартеновских и кислородных конвертерах.

Предварительная термообработка углеродистых инструментальных сталей — отжиг на зернистый перлит, окончательная — закалка в воде или растворе соли и низкий отпуск. После этого структура стали представляет собой мартенсит с включениями зернистого цементита. Твердость после термообработки в зависимости от марки лежит в интервале HRC 56-64.

Для углеродистых инструментальных сталей характерны низкая теплостойкость (до 200 °С) и низкая прокаливаемость (до 10-12 мм). Однако вязкая незакален­ная сердцевина повышает устойчивость инструмента против поломок при вибрациях и ударах. Кроме того, эти стали достаточно дешевы и в незакаленном состоянии сами хорошо обрабатываются.

Особенности маркировки ЛС

В начале статьи в списке легирующих элементов возле каждого из них стоят буквы, что не случайно. Именно ими производится маркировка подобных металлов, но помимо них присутствуют еще цифры. Пример приведен ниже.

Все это делается согласно ГОСТу 4543-71. Буквенно-цифровое обозначение принято неслучайно, ведь все легированные стали имеют широкий ассортимент. А в таком многообразии несложно запутаться, и поэтому возникла необходимость в систематизации.

При этом каждая буква кириллицы (идет первой) в обозначении указывает на присутствие того или иного элемента, а цифра (как правило, после буквы) — содержание в процентах. При этом, если речь идет о количестве менее 0,99 %, то число обычно не ставится.

Иногда в сплав могут быть добавлены и редкоземельные металлы, такие как иттрий, лантан и ряд прочих. В этом случае в обозначении стали легированной по ГОСТу указывается лишь одна буква – Ч. В маркировке стали есть и другие особенности:

  • Первые две цифры всегда указывают на процентное содержание углерода, который буквенно никогда не обозначается.
  • Если это быстрорежущая сталь, то содержание вольфрама указывается в целых долях процента. Хрома в таких сплавах обычно 4 %.
  • Для шарикоподшипниковой стали после букв ШХ следует обозначение содержание хрома в десятых долях процента.
  • Присутствие двух литер «А» указывает на особо чистую легированную сталь.

Возьмем для примера две маркировки:

  1. 03Х13АГ19 – ЛС содержит 0,03 % углерода, 13 % хрома, 1 % азота и 19 % марганца.
  2. 18ХГТ – у этой стали углерода 0,18 %, а хрома, титана и марганца по 1 %.

Помимо этого, в самом начале какой-либо маркировки легированных сталей может стоять буква, которая указывает на материал специального назначения:

  • Электротехническая – Э.
  • Быстрорежущая – Р.
  • Шарикоподшипниковая – Ш.
  • Автоматная – А.

Легированные стали еще могут принадлежать категории высококачественных или особенно высококачественных металлов.

В этом случае в конце маркировки будет стоять литера «А» либо «Ш» соответственно.

Описание металла

Для начала необходимо выяснить, что же собой представляет этот металлический сплав. Итак, этот материал, по сути, является сплавом углерода и железа, содержащим особые элементы, оказывающие воздействие на физические и механические характеристики готовых изделий. Компоненты, добавляемые к нему, называются легирующими. Медь, ванадий, марганец, никель и хром — самые распространенные из них.

Разновидности легированной стали

Легированный металл классифицируется по процентному содержанию легирующих элементов в своем составе:

  • низколегированный сплав — до 2,5%;
  • среднелегированный — от 2,5 до 10%;
  • высоколегированный — от 10 до 50%.

Следует рассмотреть и другой важный момент. Сталь высоколегированного типа и сплавы на ее основе обладают своей классификацией и особенностями, а также могут использоваться при разных условиях:

  • жаропрочные (жароустойчивые) стали;
  • устойчивые к воздействию коррозии.

По типу легирующих компонентов принято различать следующие типы сплавов:

  • хромоникелевые;
  • хромомарганцевые;
  • хромистые.

https://youtube.com/watch?v=gfTCLHWGKpI

Особенности использования

Стали легированного типа просто незаменимы в производстве целого ряда продукции. Без этого металла и сплавов на его основе не могут обойтись следующие сферы деятельности:

  • автомобилестроение;
  • строительство;
  • химическое производство;
  • нефтяная и газовая отрасли.

Включение легирующих элементов в состав металла позволяет добиться уникальных механических характеристик материала. Потому высоколегированные стальные сплавы применяются в качестве хладоустойчивого компонента.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector