Цилиндр. виды, объём цилиндра, площадь поверхности

Определение объёма фигуры

Объем цилиндра определяется по стандартной схеме: площадь поверхности основания умножается на высоту.

Таким образом, конечная формула выглядит следующим образом: искомое определяется как произведение высоты тела на универсальное число П и на квадрат радиуса основания.

Полученная формула, надо сказать, применима для решения самых неожиданных задач. Точно так же, как объем цилиндра, определяется, например, объём электропроводки. Это бывает необходимо для вычисления массы проводов.

Отличия в формуле только в том, что вместо радиуса одного цилиндра стоит делённый надвое диаметр жилы проводки и в выражении появляется число жил в проводе N. Также вместо высоты используется длина провода. Таким образом рассчитывается объем «цилиндра» не одного, а по числу проводков в оплётке.

Такие расчёты часто требуются на практике. Ведь значительная часть ёмкостей для воды изготовлена в форме трубы. И вычислить объем цилиндра часто бывает нужно даже в домашнем хозяйстве.

Однако, как уже говорилось, форма цилиндра может быть разной. И в некоторых случаях требуется рассчитать, чему равен объем цилиндра наклонного.

Отличие в том, что площадь поверхности основания умножают не на длину образующей, как в случае с прямым цилиндром, а на расстояние между плоскостями – перпендикулярный отрезок, построенный между ними.

Как видно из рисунка, такой отрезок равен произведению длины образующей на синус угла наклона образующей к плоскости.

Осевое сечение наклонного цилиндра

Рисунок выше демонстрирует наклонный цилиндр, изготовленный из бумаги. Если выполнить его осевое сечение, то получится уже не прямоугольник, а параллелограмм. Его стороны — это известные величины. Одна из них, как и в случае сечения прямого цилиндра, равна диаметру d основания, другая же — длина образующего отрезка. Обозначим ее b.

Для однозначного определения параметров параллелограмма недостаточно знать его длины сторон. Необходим еще угол между ними. Предположим, что острый угол между направляющей и основанием равен α. Он же и будет углом между сторонами параллелограмма. Тогда формулу для площади осевого сечения наклонного цилиндра можно записать следующим образом:

S = d*b*sin(α)

Диагонали осевого сечения цилиндра наклонного рассчитать несколько сложнее. Параллелограмм имеет две диагонали разной длины. Приведем без вывода выражения, позволяющие рассчитывать диагонали параллелограмма по известным сторонам и острому углу между ними:

l1 = √(d2 + b2 — 2*b*d*cos(α));

l2 = √(d2 + b2 + 2*b*d*cos(α))

Здесь l1 и l2 — длины малой и большой диагоналей соответственно. Эти формулы можно получить самостоятельно, если рассмотреть каждую диагональ как вектор, введя прямоугольную систему координат на плоскости.

1.1. Определение цилиндра

Рассмотрим какую-либо линию (кривую, ломаную или смешанную) l, лежащую в некоторой плокости α, и некоторую прямую S, пересекающую эту плоскость. Через все точки данной линии l проведем прямые, параллельные прямой S; образованная этими прямыми поверхность α называется цилиндрической поверхностью. Линия l называется направляющей этой поверхности, прямые s1
, s2
, s3
,… − ее образующими.

Если направляющая является ломаной, то такая цилиндрическая поверхность состоит из ряда плоских полос, заключенных между парами параллельных прямых, и называется призматической поверхностью. Образующие, проходящие через вершины направляющей ломаной, называются ребрами призматической поверхности, плоские полосы между ними − ее гранями.

Если рассечь любую цилиндрическую поверхность произвольной плоскостью, не параллельной ее образующим, то получим линию, которая также может быть принята за направляющую данной поверхности. Среди направляющих выделяется та, которая, получается, от сечения поверхности плоскостью, перпендикулярной образующим поверхности. Такое сечение называется нормальным сечением, а соответствующая направляющая − нормальной направляющей.

Если направляющая − замкнутая (выпуклая) линия (ломаная или кривая), то соответствующая поверхность называется замкнутой (выпуклой) призматической или цилиндрической поверхностью. Из цилиндрических поверхностей простейшая имеет своей нормальной направляющей окружность. Рассечем замкнутую выпуклую призматическую поверхность двумя плоскостями, параллельными между собой, но не параллельными образующим.

В сечениях получим выпуклые многоугольники. Теперь часть призматической поверхности, заключенная между плоскостями α и α’, и две образовавшиеся при этом многоугольные пластинки в этих плоскостях ограничивают тело, называемое призматическим телом − призмой.

Цилиндрическое тело − цилиндр определяется аналогично призме: Цилиндром называется тело, ограниченное с боков замкнутой (выпуклой) цилиндрической поверхностью, а с торцов двумя плоскими параллельными основаниями. Оба основания цилиндра равны, также равны между собой и все образующие цилиндра, т.е. отрезки образующих цилиндрической поверхности между плоскостями оснований.

Цилиндром (точнее, круговым цилиндром) называется геометрическое тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов (рис. 1).

Рис. 1 − Цилиндр

Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, − образующими цилиндра.

Так как параллельный перенос есть движение, то основания цилиндра равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований.

Прямой цилиндр наглядно можно представить себе как геометрическое тело, которое описывает прямоугольник при вращении его около стороны как оси (рис. 2).

Рис. 2 − Прямой цилиндр

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром.

Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Цилиндр называется равносторонним, если его высота равна диаметру основания.

Если основания цилиндра плоские (и, следовательно, содержащие их плоскости параллельны), то цилиндр называют стоящим на плоскости. Если основания стоящего на плоскости цилиндра перпендикулярны образующей, то цилиндр называется прямым.

В частности, если основание стоящего на плоскости цилиндра − круг, то говорят о круговом (круглом) цилиндре; если эллипс − то эллиптическом.

Нюансы расчета площади по внутренней стороне трубы

Что касается внутренней поверхности трубы, то чаще всего ее площадь вычисляют для дальнейшего расчета гидродинамики транспортировки теплоносителя по всему отопительному, водоснабжающему или водоотводящему трубопроводу.

Суть такого расчета заключается в том, чтобы определить сопротивление, которое будет оказываться теплоносителю при движении по трубе. Сопротивление возникает в любом случае, т.к. между теплоносителем и внутренней стенкой трубы возникает трение.

Существуют следующие нюансы:

  • Чем больше диаметр трубопровода, тем меньше гидравлическое сопротивление внутри него. Соответственно при большом диаметре можно вовсе не учитывать данный параметр.
  • Также гидравлическое сопротивление очень зависимо от качества материала, из которого изготовлен трубопровод, поскольку различные шероховатости могут повлиять на скорость транспортировки теплоносителя. Данный нюанс более значим для определения гидродинамики, чем площадь внутренней поверхности трубы. Естественно, пластиковые трубы в этом плане будут куда более выгодными, чем металлические, в которых образуется ржавчина.
  • Если устанавливать систему из оцинкованных металлических труб, то нужно знать не только, как посчитать квадратные метры трубы, но и то, что на таком материале постоянно образуется ржавчина и скапливаются прочие отложения.

Итог

В статье подробно описаны формулы для вычисления всевозможных линейных параметров трубопровода. Все формулы очень просты: достаточно в них подставить лишь конкретные значения. Полученные значения площадей помогут не только сэкономить на различных материалах (утеплитель, краска), но и высчитать различные особенности всей системы отопления, водоснабжения или водоотведения.

Лучше всего, используя данную статью, определить основные параметры трубопровода, прежде чем обращаться к специалистам для проведения работ различного характера.

Когда встает вопрос окраски труб, визуально кажется, что это и времени много не займет, и краски понадобится один стакан. На практике оказывается, что дело обстоит совсем иначе. Поверхность труб имеет площадь и поддается подсчету, по результатам которого вычисляется объем работ и количество материала. Площадь трубы под окраску калькулятор высчитывает за доли секунды, тогда как ручной подсчет кажется сложнейшим делом.

Газовая труба подлежит регулярной окраске

Расчет площади труб нужен тогда, когда требуется узнать расход материала и трудозатраты. Определить визуально площадь стен и прикинуть примерный расход может любой мастер, а вот сделать то же самое, когда дело касается труб или металлических конструкций намного сложнее.

Площадь труб нужно узнать, если планируются следующие работы:

  • нанесение антикоррозионного покрытия;
  • декоративное окрашивание;
  • нанесение теплоизоляционного слоя на трубы большого диаметра.

В каждом из этих случаев требуется узнать расход материалов. Если окрашивается, например, металлическая конструкция из круглой или профильной трубы, и работы выполняются наемными рабочими, то во избежание всяческих злоупотреблений стоит заранее просчитать расход материала и трудозатраты в человеко-часах. Такой подход выгоден заказчику и вызывает уважение в глазах исполнителя.

Калькулятор расчета площади трубы под окраску

В быту расчетам на строительство отводится обычно далеко не первое место. Это касается и процесса покраски труб. Мало кто заранее просчитывает, сколько краски придется купить для этой работы. И это неправильно, потому что предварительные расчеты помогут сэкономить немалые средства. В связи с этим возникает вопрос: как рассчитать количество лакокрасочных материалов, необходимых для покраски различных труб?

Как найти площадь цилиндра – правила вычисления

  • Чтобы узнать площадь цилиндра, необходимо две площади основания сложить с площадью боковой поверхности: S= Sбок.+ 2Sосн. В более развернутом варианте данная формула выглядит так: S= 2 π rh+ 2 π r2= 2 π r(h+ r).
  • Площадь боковой поверхности данного геометрического тела можно высчитать, если известны его высота и радиус окружности, лежащей в основании. В данном случае можно выразить радиус из длины окружности, если она дана. Высота может быть найдена, если в условии задано значение образующей. В этом случае образующая будет равна высоте. Формула боковой поверхности данного тела выглядит так: S= 2 π rh.
  • Площадь основания считается по формуле нахождения площади круга: S osn= π r 2 . В некоторых задачах может не даваться радиус, но задаваться длина окружности. С данной формулы радиус выражается достаточно легко. С=2π r, r= С/2π. Нужно также помнить о том, что радиус – это половина диаметра.
  • При выполнении всех этих расчетов число π обычно не переводится в 3,14159… Его нужно просто дописывать рядом с числовым значением, которое было получено в результате проведения вычислений.
  • Далее необходимо лишь умножить найденную площадь основания на 2 и прибавить к полученному числу вычисленную площадь боковой поверхности фигуры.
  • Если в задаче указывается, что в цилиндре есть осевое сечение и это – прямоугольник, то решение будет немного другим. В таком случае ширина прямоугольника будет являться диаметром окружности, лежащей в основании тела. Длина фигуры будет равна образующей или высоте цилиндра. Необходимо высчитать нужные значения и подставить в уже известную формулу. В данном случае ширину прямоугольника нужно разделить на два, чтобы найти площадь основания. Для нахождения боковой поверхности длина умножается на два радиуса и на число π.
  • Можно высчитать площадь данного геометрического тела через его объем. Для этого нужно из формулы V=π r 2 h вывести недостающую величину.
  • В вычислении площади цилиндра нет ничего сложного. Нужно только знать формулы и уметь выводить из них величины, необходимые для проведения расчетов.

Стереометрия − это раздел геометрии, в котором изучаются фигуры в пространстве. Основными фигурами в пространстве являются точка, прямая и плоскость. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путем рассмотрения различных плоскостей, в которых выполняются планиметрические законы.

В окружающей нас природе существует множество объектов, являющихся физическими моделями указанной фигуры. Например, многие детали машин имеют форму цилиндра или представляют собой некоторое их сочетание, а величественные колонны храмов и соборов, выполненные в форме цилиндров, подчеркивают их гармонию и красоту.

Греч. − кюлиндрос. Античный термин. В обиходе − свиток папируса, валик, каток (глагол − крутить, катать).

У Евклида цилиндр получается вращением прямоугольника. У Кавальери − движением образующей (при произвольной направляющей − «цилиндрика»).

Цель данного реферата рассмотреть геометрическое тело – цилиндр.

Для достижения данной цели необходимо рассмотреть следующие задачи:

− дать определения цилиндра;

− рассмотреть элементы цилиндра;

− изучить свойства цилиндра;

− рассмотреть виды сечения цилиндра;

− вывести формулу площади цилиндра;

− вывести формулу объема цилиндра;

− решить задачи с использованием цилиндра.

Детали и расходники:

  • Маслянный фильтр
  • Моторное масло
  • Ветошь

Инструменты:

  • Гаечный ключ торцевой трубчатый 13 мм
  • Оправка для запрессовки поршневой пальца
  • Оправка для сжатия поршневых колец
  • Молоток
  • Съемник поршневых колец
  • Щуп плоский
  • Динамометрический ключ

Детали и расходники:

1. Вставьте шатун в поршень так, что бы приливы на шатуне были обращены в сторону задней части поршня.

Примечание:

На передней части днища поршня выполнена метка в виде лунки.

3. Установите стопорные кольца поршневого пальца в канавки поршня.

4. Установите поршневые кольца. Это рекомендуется делать специальным съемником. Если его нет, установите кольца на поршень, аккуратно разведя замки колец.

5. Порядок установки колец следующий: сначала устанавливают составное маслосъемное кольцо (замок кольца должен находиться с противоположной стороны от замка разжимной пружины), затем нижнее компрессионное кольцо и, наконец, верхнее.

6. Сориентируйте кольца, как показано на рисунке. Установите кольца на остальные поршни.

Расположение замков поршневых колец перед установкой поршня в цилиндр:

1 — расширителя маслосъемного и верхнего компрессионного колец;

2 — верхнего маслосъемного кольца;

3 — нижнего компрессионного кольца;

4 — нижнего маслосъемного кольца.

Примечание:

Устанавливайте нижнее компрессионное кольцо маркировкой вверх.

7. Установите вкладыш в шатун, совместив установочный усик вкладыша с выемкой на шатуне.

8. Смажьте моторным маслом зеркало цилиндра, поршень, поршневые кольца и шатунный вкладыш.

9. Установите на поршень оправку для сжатия колец и, вворачивая винт, сожмите кольца.

10. Проверните коленчатый вал так, чтобы его шатунная шейка, на которую монтируют шатунно-поршневую группу, установилась в ВМТ. Установите поршень цилиндра в соответствии с маркировкой номера цилиндра на шатуне.

11. Нажмите (например, рукояткой молотка) на поршень и сдвиньте его из оправки в цилиндр до момента установки нижней головки шатуна на шатунной шейке коленчатого вала. Аналогично установите поршни в остальные цилиндры.

Примечание:

При установке поршней в цилиндры метки (лунки) на поршнях должны быть обращены к передней части двигателя.

Предупреждение:

При установке поршня плотно прижимайте приспособление для сжатия поршневых колец к блоку цилиндров, иначе будут сломаны поршневые кольца.

Устанавливайте поршень в цилиндр осторожно, чтобы нижней головкой шатуна не повредить шатунную шейку коленчатого вала

12. Установите шатунные вкладыши в крышки шатунов, совместив установочный усик вкладыша с выемкой на крышке.

13. Смажьте моторным маслом шатунные вкладыши в крышках шатунов и шатунные шейки коленчатого вала.

14. Установите крышку шатуна, соединив шатун с шейкой коленчатого вала.

Предупреждение:

Крышку шатуна устанавливайте таким образом, чтобы маркировки номера цилиндра на шатуне и на крышке расположились с одной стороны.

15. Смажьте моторным маслом резьбу болтов и гайки крепления крышки шатуна.

16. Навинтите гайки шатунных болтов, не затягивая их окончательно.

17. Затяните гайки шатунных болтов моментом 13,7-15,7 Н-м (1,4-1,6 кгс*м).

18. Доверните все гайки на 35-40° по часовой стрелке.

19. Проверьте легкость перемещения шатунов вдоль шатунных шеек. При заедании отверните гайки шатунных болтов и повторно затяните их, как описано в пп. 17,18.

20. Проверьте плоским щупом боковые зазоры между шатунами и щеками кривошипов коленчатого вала. Номинальный зазор 0,200-0,470 мм, предельно допустимый — 0,5 мм. Если боковой зазор больше предельно допустимого, замените шатун и/или коленчатый вал.

21. Установите снятые детали в порядке, обратном снятию.

Обкатка двигателя

После сборки двигателя рекомендуется провести его обкатку на стенде. Поскольку вне специальных ремонтных организаций это сделать невозможно, после установки двигателя на автомобиль обкатайте его по упрощенному циклу следующим образом:

1. Залейте масло и охлаждающую жидкость, проверьте герметичность всех соединений.

2. Пустите двигатель и дайте ему поработать без нагрузки по следующему циклу:

  • 820-900 об/мин — 2 минуты;
  • 1000 об/мин — 3 минуты;
  • 1500 об/мин — 4 минуты;
  • 2000 об/мин — 5 минут.

He доводите работу двигателя до максимальных режимов.

3

Во время работы проверьте герметичность двигателя и его систем, давление масла, обратите внимание на наличие посторонних шумов

4. Если обнаружены посторонние шумы или другие неисправности, остановите двигатель и устраните их причины.

5. Начав эксплуатацию автомобиля, соблюдайте режимы, предусмотренные для периода обкатки нового автомобиля.

В статье не хватает:

Качественных фото ремонта

Задача 3.

Высота цилиндра 6см, радиус основания 5см.

Найдите площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4см от нее.

Дано: Н = 6см, R = 5см, ОЕ = 4см.

Найти: S сеч.

S сеч.
= КМ×КС,

ОЕ = 4 см, КС = 6 см.

Треугольник ОКМ − равнобедренный (ОК = ОМ = R = 5 см),

треугольник ОЕК − прямоугольный.

Из треугольника ОЕК, по теореме Пифагора:

КМ = 2ЕК = 2×3 = 6,

S сеч.
= 6×6 = 36 см 2
.

Цель данного реферата выполнена, рассмотрено такое геометрическое тело, как цилиндр.

Рассмотрены следующие задачи:

− дано определение цилиндра;

− рассмотрены элементы цилиндра;

− изучены свойства цилиндра;

− рассмотрены виды сечения цилиндра;

− выведена формула площади цилиндра;

− выведена формула объема цилиндра;

− решены задачи с использованием цилиндра.

1. Погорелов А. В. Геометрия: Учебник для 10 – 11 классов общеобразовательных учреждений, 1995.

2. Бескин Л.Н. Стереометрия. Пособие для учителей средней школы, 1999.

3. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Киселева Л. С., Позняк Э. Г. Геометрия: Учебник для 10 – 11 классов общеобразовательных учреждений, 2000.

4. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия: учебник для 10-11 классов общеобразовательных учреждений, 1998.

5. Киселев А. П., Рыбкин Н. А. Геометрия: Стереометрия: 10 – 11 классы: Учебник и задачник, 2000.

Цилиндр — это симметричная пространственная фигура, свойства которой рассматривают в старших классах школы в курсе стереометрии. Для его описания используют такие линейные характеристики, как высота и радиус основания. В данной статье рассмотрим вопросы касательно того, что такое осевое сечение цилиндра, и как рассчитать его параметры через основные линейные характеристики фигуры.

Объем цилиндрической полости

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Теория

Цилиндр может быть правильным или наклонным.

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

7.3. Цилиндрическая поверхность

Цилиндрическая поверхность образуется движением прямой линии, которая в любом своём положении параллельна данному направлению и пересекает криволинейную направляющую (Рисунок 7.6).

Цилиндр – геометрическое тело, ограниченное замкнутой цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими все образующие данной поверхности.

Взаимно параллельные плоские фигуры, ограниченные цилиндрической поверхностью, называются основаниями цилиндра.

Если нормальное сечение (плоскость сечения перпендикулярна образующим) имеет форму окружности, то цилиндрическая поверхность называется круговой.

Если образующие цилиндрической поверхности перпендикулярны к основаниям, то цилиндр называется прямым, в противном случае – наклонным.

Рассмотрим проецирование прямого кругового цилиндра  и принадлежащей ему точки F.

Условимся, что фронтальная проекция точки F – невидима (Рисунок 7.6).

Рисунок 7.6 – Проецирование цилиндра на плоскости проекций

Горизонтальная и профильная проекции точки F будут видимы.

При определении видимости, образующие, которые находятся на части, обращённой к наблюдателю и обозначенной на πсплошной зелёной  линией – на плоскости проекции π2 видны, а которые находятся на части, обозначенной толстой штриховой линией – видны на π3.

Пусть точка А на πвидима (Рисунок 7.7). Тогда на πона будет видима, а на π3 невидима.

Рисунок 7.7 – Эпюр прямого кругового цилиндра и принадлежащих ему точек

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector