Удельный вес нержавейки aisi 304. плотность нержавеющей стали

Химический состав

Расшифровка марки стали Ст3 указывает на основные компоненты в ее составе – железо (97%) и углерод (0,14-0,22%). От концентрации углерода зависит основное качество сплава – его твердость. В состав стали входят также небольшие количества:

  • марганца – 0,4-0,65%;
  • кремния – 0,15-0,17%;
  • никеля и хрома – по 0,3%;
  • мышьяка – 0,08%;
  • меди – до 0,3%;
  • серы – 0,05%;
  • фосфора – 0,04%;
  • азота – до 0,008%.

Особенностью сплава Ст3 является жесткое регламентирование содержания вредных примесей – серы и фосфора. Фосфор снижает пластичность металла при действии высоких температур, а сера при взаимодействии с железом образует сульфиды, вызывающие явление красноломкости. Следует отметить и повышенную концентрацию азота, на который приходится почти 0,1%. В соответствии с ГОСТом 380-2005 сплав маркируется с сопутствующими индексами, которые указывают на степень раскисления, например, Ст3Гсп:

  • первые две буквы указывают на углеродистую сталь обыкновенного качества;
  • цифра «3» означает порядковый номер марки по данному ГОСТу;
  • знак «Г» свидетельствует о модификации с повышенным содержанием марганца;
  • «сп», «кп», «пс» – степени раскисления.

Заменителями марки стали Ст3 могут выступать:

  • С245, согласно ГОСТу 27772-88;
  • С285;
  • ВСт3Сп.

Зарубежные аналоги маркируются по другим правилам:

  • A57036, K01804 – США;
  • 40B, 722M24, HFS4 – Великобритания;
  • 1.0038, DC03 – Германия;
  • E24-2, E24-4 – Франция;
  • SS330, SS400 – Япония;
  • Fe360B, Fe360C – Италия;
  • G235C – Китай;
  • RSt360B – Австрия;
  • Fe235D – Венгрия.

Номенклатура продукции включает:

  • сортовой и фасонный прокат по ГОСТу 2591-2006;
  • листы различной толщины и штамповки;
  • трубы и арматуру, согласно ГОСТу 10705-80;
  • ленты и полосы, которые выпускаются по ГОСТу 14918-80;
  • проволоку разного сечения.

ГОСТ

Производство изделий марки 20 имеет свои стандарты:

  • Прокаты фасонного и сортового типа делаются в соответствии норм и правил ГОСТ, изданными в следующих номерах: 1050-88, 2590-2006, 2591-2006, 2879-2006, 8509-93, 8510-86, 8240-97, 8239-89.
  • Пруток калиброванный изготавливается в соответствии со стандартами ГОСТ: 7417-75, 8559-75, 8560-78, 10702-78.
  • Серебрянка и шлифованный пруток регламентируются ГОСТ 14955-77.
  • Толстые листы представляют собой заготовки, выполненные в строгом соответствии со стандартами ГОСТ 1577-93 и ГОСТ 19903-74.
  • Тонкие листы изготавливаются в соответствии с ГОСТ 16523-97.
  • Производство лент происходит строго в соответствии четырех стандартов ГОСТ: 6009-74, 10234-77, 103-2006, 82-70.
  • Проволочные изделия подлежат заготовки по ГОСТу 5663-79 и ГОСТу 17305-91.
  • Заготовки кованого типа, а также поковки изготавливаются согласно правилам и принятым стандартам ГОСТ 8479-70.
  • Трубы подлежат регламенту семи ГОСТов: 10704-91, 10705-80, 8731-74, 8732-78, 8733-74, 5654-76 и 550-75.

Плотность нержавеющей стали

Плотность вещества вычисляется путем деления массы объекта на его объем. Такие вычисления для всех известных человеку веществ уже сделаны, и метрологические службы периодически повторяют и уточняют эти измерения. На практике перед людьми встает другая практическая задача: зная материал, из которого изготовлено изделие, определить его массу.

Плотность вещества также называют удельной массой (или, в быту, удельным весом) — т. е. массой сплошного физического тела изготовленного из данного вещества и имеющего единичный объем.

Нержавеющая сталь

Следует отметить, что, используя термин «масса», в 99% случаев люди имеют дело с весом — силой притяжения физического тела к Земле. Дело в том, что для определения массы тела в строгом физическом смысле требуется сложное оборудование, доступное лишь в крупнейших научных центрах. Для практического применения в большинстве случаев достаточно обычных, более или менее точных весов, использующих гравитацию Земли и пружины, либо рычаги и стандартные гири, либо пьезоэлементы.

На практике, чтобы рассчитать вес погонного или квадратного метра металлопроката используют удельную массу, или плотность материала, из которого он изготовлен. В справочниках по сортаменту металлопроката среди основных характеристик каждого сорта обязательно указывается масса погонного или квадратного метра и значение плотности, использованное при вычислениях.

Однако нужно понимать, что данные в справочнике рассчитываются на основании стандартной плотности стали, чаще всего это 7,85 т/м3. В то же время фактическая плотность стали конкретной марки зависит от состава и удельного количества присадок и может колебаться от 7,6 до 8,8 т/м3.

Это может дать погрешность до 10% в большую или в меньшую сторону для изделия, сделанного из очень легкого или, наоборот, очень тяжелого сплаваю. Для малого количества металла разница будет мала, и ею можно будет пренебречь. Однако для сложных изделий, использующих большие объемы металла, потребуются более точные расчеты.

https://youtube.com/watch?v=eN9Y_AqExdI

Масса понадобится при формировании заявки на закупку металла. На основе плотности данного сплава делают корректировку справочных значений массы одного погонного или квадратного метра, и далее в расчетах используют уже уточненное значение.

Марка пищевой нержавеющей стали

Нержавеющие стали в настоящее время считаются практически незаменимым материалом для создания пищевого оборудования. Марки нержавейки, допущенные к контакту с пищевой продукцией, определялись в основном по опыту винодельческих производств, которые ведутся с применением наиболее коррозионно-активных процессов и технологий. В результате выяснилось, что при выборе марки пищевой нержавейки следует учитывать длительность ее контакта с пищевым продуктом. Чем дольше контакт, тем более высокая коррозионная устойчивость потребуется.

В настоящее время получила широкое применение нержавеющая сталь для пищевой промышленности марок AISI 304, AISI 304L, AISI 430, AISI316, AISI 316L, AISI 316Ti, AISI 321. Все они являются легированными нержавеющими сталями. Если вам нужна нержавейка пищевая, марка может быть любой из этого списка, однако следует знать, что AISI 304, AISI 430, AISI 316 не содержат в своем составе стабилизирующего титана. Это снижает их коррозионную стойкость и делает чувствительными к механическим, термическим и химическим воздействиям. Их можно использовать для недолгого контакта с пищевыми продуктами в щадящих условиях эксплуатации.

Особенности нержавеющей стали для пищевой промышленности

Производители продуктов питания активнее всего используют трубы из нержавейки. Они должны соответствовать требованиям стандарта DIN 11850, который определяет состав стали и качество сварного шва. Трубы из нержавейки полностью отвечают повышенным требованиям, гигиены и экологичности материалов, применяемых в производстве оборудования для пищевой промышленности и сферы общественного питания. Их изготавливают из сталей AISI 304 и AISI 316L, которые проявляют следующие свойства:

  • высокая коррозийная устойчивость по всей длине трубы и на участках сварных соединений;
  • устойчивость к химически агрессивным средам;
  • износостойкость;
  • экологическая безопасность и нетоксичность;
  • соответствие стандартам миграции (растворения) тяжелых металлов в рабочей среде;
  • сохранение параметров гладкости в течение всего срока эксплуатации, что облегчает чистку и обслуживание оборудования.

В пищевых производствах для мойки оборудования часто используют горячие растворы сульфаминовой кислоты или каустической соды. В этих условиях лучше выбирать более устойчивую к агрессивным средам нержавейку AISI 316. Для бытовых условий и общепита, где металл не взаимодействует с подобными растворами, можно использовать AISI 304 и более дешевые AISI 430, AISI 410.

Ниже для наглядности представлены типы нержавеющих сталей по AISI, используемых в пищевом производстве, их соответствие другим стандартам, включая российский, а также допустимая применимость нержавейки в различных средах.

Таблица 1. 1. Переводы международных стандартов для обозначения основных сталей, применяемых в пищевом производстве.

Таблица 1. 2. (продолжение) Переводы международных стандартов для обозначения основных сталей, применяемых в пищевом производстве

Таблица 2. Применимость нержавеющих сталей по AISI. Коррозионная стойкость сталей по AISI в различных применениях

Цена

Если вам требуется пищевая нержавейка, цена на нее будет определяться наличием в составе дорогих легирующих компонентов

Также важно качество обработки поверхности выбранных изделий. Оборудование для пищевой промышленности предъявляет более высокие требования к нержавейке, которая используется в более агрессивных условиях, а в случае коррозии может нанести вред огромным объемам продукции

В быту и общепите может использоваться дешевая пищевая нержавейка.

Как определить пищевую нержавейку?

Чтобы определить состав нержавеющей стали пищевой и ее пригодность по параметрам коррозионной устойчивости, можно воспользоваться справочником по маркам нержавейки. Если вы располагаете образцом нержавейки неизвестной марки, его пригодность можно проверить, поместив на два-три дня в двухпроцентный раствор уксуса или в рабочую среду. Сталь можно использовать, если образец не потемнеет.

Распространенное мнение о том, что пищевую нержавейку можно определить при помощи магнита, ошибочно. Среди марок пищевой нержавейки встречаются как намагничивающиеся, так и не намагничивающиеся стали. Чтобы определиться с выбором, не стесняйтесь проконсультироваться со специалистом компании, где собираетесь производить закупку нержавейки. Чем лучше вы представляете себе процессы пищевого производства, для которого вам нужна нержавеющая сталь, тем больше у вас шансов сделать правильный выбор.

Основные характеристики и свойства

При выборе металла уделяется много внимания основным характеристикам. К ним отнесем:

  1. Показатель твердости. Он может варьировать в большом диапазоне и зависеть от того, была ли проведена термическая обработка. Твердость стали 20 выдерживается на уровне 163 МПа. Этого вполне достаточно для изготовления различных изделий, которые обладают высокой износостойкостью.
  2. Также учитывается и плотность. Менее плотные материалы применяются для изготовления изделий, которые будут обладать небольшим весом. В рассматриваемом случае показатель составляет 7,85 к/см3.
  3. Рассматривая основные характеристики учитывается предел текучести и предел прочности. Они рассматриваются при создании различных проектов. Металл Ст 20 может улучшаться для того, чтобы увеличить характеристики материала.
  4. Структура характеризуется тем, что не склонна к отпускной хрупкости и образованию флокенов.
  5. Проводимая термообработка стали 20 позволяет существенно увеличить срок службы изделия. Проводится она при определенных режимах. К примеру, для ковки структура нагревается до температуры 1 280 градусов Цельсия.
  6. При необходимости есть возможность проводить сваривание деталей.
  7. Ударная вязкость стали 20 определяет то, что металл часто применяется при изготовлении валов и других подобных изделий, которые могут использоваться при создании элементов, применяемых при создании различных механизмов. Модуль упругости также учитывается при рассмотрении основных свойств металла.
  8. Средний коэффициент теплопроводности определяет то, что структура может нагреваться достаточно быстро, но при этом тепло отводится с высокой эффективностью.

Свойства Ст 20

Механические свойства стали 20 определяют довольно широкое распространение этой марки в машиностроительной и других область промышленности. Как ранее было отмечено, технические характеристики могут улучшаться при проведении термической обработки или легировании. Перестроение структуры металла позволяет повысить твердость поверхностного слоя, при добавлении других химических веществ могут придаваться особые качества, к примеру, коррозионная стойкость.

Термическая обработка предусматривает изменение структуры за счет оказания воздействия определенной температуры. Критические точки выбираются в зависимости от особенностей химического состава. К особенностям подобной процедуры отнесем следующие моменты:

Для оказания требуемого воздействия применяется специальное оборудование. Примером можно назвать доменные и индукционные печи. На протяжении длительного периода использовали именно доменные печи, но они уступают индукционным. Второй вариант исполнения подходит для установки в небольших мастерских.
Критические точки учитываются при проведении рассматриваемой процедуры. Стоит учитывать, что они уже были выявлены для всех металлов, поэтому не нужно проводить исследования повторно.
Заготовка разогревается до требуемой температуры, после чего происходит первичное перестроение структуры

Время выдержки также является важным показателем, который должен учитываться, как и скорость нагрева.
Уделяется внимание и процессу охлаждения. Слишком большие заготовки охлаждаются на воздухе, так как возникают проблемы с созданием требующейся среды

На протяжении длительного периода охлаждение проводилось в воде, но это приводило к появлению окалины. Обеспечить более высокое качество термической обработки возможно за счет применения масла в качестве охлаждающей среды. Однако, при охлаждении в масле следует учитывать высокую вероятность образования токсичного дыма и воспламенения поверхности от высокой температуры.

Цвета закалки стали

Во многих случаях после термической обработки образуются поверхностные дефекты. Именно поэтому процедура применяется для заготовок или изделий, которые созданы с учетом припуска. После закалки часто проводится отпуск, который позволяет снять внутренние напряжения и снизить вероятность повреждения изделия при падении или возникновении ударной нагрузки.

1 Что такое плотность и зачем ее знать для нержавеющих и других сталей?

Плотность (P) – это физическая величина, которая определяется для однородного материала либо вещества их массой (в г, кг или т) в единице объема (1 мм 3 , 1 см 3 или 1 м 3 ). То есть вычисляется делением массы на объем, в котором она заключена. В результате получается некая величина, которая для каждого материала и вещества имеет свое значение, изменяющееся в зависимости от температуры. Плотность еще называют удельной массой. Оперируя этим термином, проще понять суть данной характеристики. То есть это масса, которой обладает единица объема материала либо вещества.

И для вычисления теоретического (расчетного номинального) веса 1 погонного или квадратного метра какой-либо металлопродукции используют именно эту физическую величину – плотность, разумеется, для соответствующего металла. А во всех ГОСТах сортамента, где приводятся основные характеристики проката, после таблиц, в которых перечислены теоретические массы 1 погонного или квадратного метра изделий разных типоразмеров, обязательно указывается, какое именно значение плотности бралось при расчете. Зачем и когда нужно выяснять вес 1 метра металлопродукции, знают все, кому это надо. Этот параметр используют для вычисления общей массы одного изделия либо целой партии по их суммарной длине либо площади. А вот зачем и когда нужно знать плотность стали, в частности нержавеющей?

Дело в том, что для всех видов металлопродукции теоретическая масса 1 метра, приведенная в ГОСТах и справочниках, рассчитана была с использованием того или иного среднего значения плотности. Для стального проката чаще всего встречается указание на величину в 7850 кг/м 3 или 7,85 г/см 3 , что одно и то же. А фактическая P стали в зависимости от использованного для производства изделия сплава может варьироваться в пределах от 7600 до 8800 кг/м 3 .

При желании нетрудно подсчитать, какая будет погрешность в случае выполнения расчета массы уголка (либо изделия иного вида стального проката), изготовленного не из углеродистой или другой стали с плотностью 7850 кг/м 3 , а из другого более тяжелого (например, стали 12Х18Н10Т) либо легкого сплава. Для небольших объемов проката, и когда не требуется точное определение веса, разница будет несущественна. То есть приблизительный расчет общей массы металлопродукции на основе табличных данных из ГОСТа об весе ее 1 метра будет оправдан. К тому же, при отгрузке, как правило, делают взвешивание, чтобы определить фактический вес изделий для точности взаиморасчетов между поставщиком и покупателем.

Но нередко необходимо знать точный, пусть и теоретический, вес еще на стадии оформления заказа на поставку проката, а для конструкторских и проектных расчетов это является обязательным условием. Именно в таких случаях выясняют плотность для сплава, из которого изготовляется металлоизделие, а затем на основе этих данных делают корректировку взятой из ГОСТа массы его 1 метра. И только потом рассчитывают общий вес проката. Как корректировать вес 1 метра, рассмотрено ниже.

Применение


Широкое применение сталь СТ 20 получила в различных отраслях промышленности

  • Машиностроение. Стальные элементы используются в качестве получения шестерней, муфт соединительного характера и элементов червячных пар. Из них получаются первоклассные приспособления для крепежа, а также соединительные детали в виде валов и кронштейнов.
  • Трубопроводная отрасль по изготовлению арматуры.
  • Строительство. Благодаря ряду ценных характеристик данного вида стали, ее применяют для производства металлоконструкций.

Важно. Прекрасная характеристики крепления во время спаивания, невысокая стоимость и невероятная прочность делают доступным использование стальных элементов в работе несущих конструкций в виде ферм, перекладин поперечного вида и стоек

Отлично получаются крепежные детали и элементы подобного характера (гайки, болты и прочие подобные детали).

1 Что такое плотность и зачем ее знать для нержавеющих и других сталей?

Плотность (P) – это физическая величина, которая определяется для однородного материала либо вещества их массой (в г, кг или т) в единице объема (1 мм 3. 1 см 3 или 1 м 3). То есть вычисляется делением массы на объем, в котором она заключена. В результате получается некая величина, которая для каждого материала и вещества имеет свое значение, изменяющееся в зависимости от температуры. Плотность еще называют удельной массой. Оперируя этим термином, проще понять суть данной характеристики. То есть это масса, которой обладает единица объема материала либо вещества.

Удельный вес нержавеющей стали

И для вычисления теоретического (расчетного номинального) веса 1 погонного или квадратного метра какой-либо металлопродукции используют именно эту физическую величину – плотность, разумеется, для соответствующего металла. А во всех ГОСТах сортамента, где приводятся основные характеристики проката, после таблиц, в которых перечислены теоретические массы 1 погонного или квадратного метра изделий разных типоразмеров, обязательно указывается, какое именно значение плотности бралось при расчете. Зачем и когда нужно выяснять вес 1 метра металлопродукции. знают все, кому это надо. Этот параметр используют для вычисления общей массы одного изделия либо целой партии по их суммарной длине либо площади. А вот зачем и когда нужно знать плотность стали, в частности нержавеющей?

Дело в том, что для всех видов металлопродукции теоретическая масса 1 метра, приведенная в ГОСТах и справочниках, рассчитана была с использованием того или иного среднего значения плотности. Для стального проката чаще всего встречается указание на величину в 7850 кг/м 3 или 7,85 г/см 3. что одно и то же. А фактическая P стали в зависимости от использованного для производства изделия сплава может варьироваться в пределах от 7600 до 8800 кг/м 3 .

При желании нетрудно подсчитать, какая будет погрешность в случае выполнения расчета массы уголка (либо изделия иного вида стального проката), изготовленного не из углеродистой или другой стали с плотностью 7850 кг/м 3. а из другого более тяжелого (например, стали 12Х18Н10Т) либо легкого сплава. Для небольших объемов проката, и когда не требуется точное определение веса, разница будет несущественна. То есть приблизительный расчет общей массы металлопродукции на основе табличных данных из ГОСТа об весе ее 1 метра будет оправдан. К тому же, при отгрузке, как правило, делают взвешивание, чтобы определить фактический вес изделий для точности взаиморасчетов между поставщиком и покупателем.

Но нередко необходимо знать точный, пусть и теоретический, вес еще на стадии оформления заказа на поставку проката, а для конструкторских и проектных расчетов это является обязательным условием. Именно в таких случаях выясняют плотность для сплава, из которого изготовляется металлоизделие, а затем на основе этих данных делают корректировку взятой из ГОСТа массы его 1 метра. И только потом рассчитывают общий вес проката. Как корректировать вес 1 метра, рассмотрено ниже.

Удельный вес металлов

Все тела, имеющие одинаковый объем, но произведенные из различных веществ, имеют различную массу, которая находится в прямой зависимости от его объема. Отношение объема сплава к его массе — плотность — является постоянной величиной, которая будет характерной для данного вещества. А удельный вес — это сила тяжести непосредственно взятого за основу объема данного вещества. Другими словами, удельным весом металла называется вес единицы объема безусловного плотного (непористого) материала. Для обозначения удельного веса следует массу сухого материала поделить на его объем в полностью плотном состоянии. Все известные и применяемые в промышленности металлы обладают определенными физико-механическими свойствами, которые, собственно говоря, и определяют их удельный вес. Металлы обладают характерными свойствами, среди которых можно назвать высокую прочность, тепло- и электропроводность, пластичность. Химические свойства и удельный вес цветных металлов

Наименование цветного металла Химическое обозначение Атомный вес Температура плавления, °C Удельный вес, г/куб.см
Цинк (Zinc) Zn 65,37 419,5 7,13
Алюминий (Aluminium) Al 26,9815 659 2,69808
Свинец (Lead) Pb 207,19 327,4 11,337
Олово (Tin) Sn 118,69 231,9 7,29
Медь (Сopper) Cu 63,54 1083 8,93
Титан (Titanium) Ti 47,90 1668 4,505
Никель (Nickel) Ni 58,71 1455 8,91
Магний (Magnesium) Mg 24 650 1,74
Ванадий (Vanadium) V 6 1900 6,11
Вольфрам (Wolframium) W 184 3422 19,3
Хром (Chromium) Cr 51,996 1765 7,19
Молибден (Molybdaenum) Mo 92 2622 10,22
Серебро (Argentum) Ag 107,9 1000 10,5
Тантал (Tantal) Ta 180 3269 16,65
Золото (Aurum) Au 197 1095 19,32
Платина (Platina) Pt 194,8 1760 21,45

Удельный вес наиболее распространенных марок стали

Наименование (тип стали) Марка или обозначение Удельный вес (г/см 3 )
Сталь нержавеющая конструкционная криогенная 12Х18Н10Т 7,9
Сталь нержавеющая коррозионно-стойкая жаропрочная 08Х18Н10Т 7,9
Сталь конструкционная низколегированная 09Г2С 7,85
Сталь конструкционная углеродистая качественная 10,20,30,40 7,85
Сталь конструкционная углеродистая Ст3сп, Ст3пс 7,87
Сталь инструментальная штамповая Х12МФ 7,7
Сталь конструкционная рессорно-пружинная 65Г 7,85
Сталь инструментальная штамповая 5ХНМ 7,8
Сталь конструкционная легированная 30ХГСА 7,85

Удельный вес стали различных марок

Наименование (тип стали) Марка или обозначение Удельный вес (г/см 3 )
никельхромовая сталь ЭИ 418 8,51
хромомарганцовоникелевая сталь Х13Н4Г9 (ЭИ100) 8,5
хромистая сталь 1Х13 (ЭЖ1) 7,75
2Х13 (ЭЖ2) 7,70
3Х13 (ЭЖ3) 7,70
4Х14 (ЭЖ4) 7,70
Х17 (ЭЖ17) 7,70
Х18 (ЭИ229) 7,75
Х25 (ЭИ181) 7,55
Х27 (Ж27) 7,55
Х28 (ЭЖ27) 7,85
хромоникелевая сталь 0Х18Н9 (ЭЯ0) 7,85
1Х18Н9 (ЭЯ1) 7,85
2Х18Н9 (ЭЯ2) 7,85
Х17Н2 (ЭИ268) 7,75
ЭИ307 7,7
ЭИ334 8,4
Х23Н18 (ЭИ417) 7,9
хромокремнемолибденовая сталь ЭИ107 7,62
хромоникельвольфрамовая сталь ЭИ69 8,0
хромоникельвольфрамовая с кремнием сталь Х25Н20С2 (ЭИ283) 8,0
хромоникелькремнистая сталь ЭИ72 7,7
прочая особая сталь ЭИ401 7,9
ЭИ418 8,51
ЭИ434 8,13
ЭИ435 8,51
ЭИ437 8,20
ЭИ415 7,85

Удельный вес стали углеродистой и легированной

2 Технические показатели – самые главные цифры

Удельный вес аустенитных и жаропрочных сплавов равняется 7,95 гр/см, ферритных и других – 7,7, коэффициент электросопротивления – 0,72–0,9 для всех сталей, кроме ферритных. Электрическое сопротивление последних составляет 0,6. Коэффициент твердости нержавеющих сплавов следующий:

  • По шкале Роквелла – 70–88 единиц для жаростойких и аустенитных сталей, 75–88 для ферритных.
  • По шкале Бринелля – 120–190 (аустенитные), 135–180 (магнитные) и 145–210 (жаропрочные).

Предел прочности нержавеющих сплавов с аустенитной микроструктурой варьируется от 500 до 690 Н/мм2. Все зависит от конкретной марки стали. А вот прочностной предел ферритных сплавов обычно выше – до 900 Н/мм2. Другие характеристики рассматриваемых сталей:

  • предел упругости – 195–400 Н/мм2;
  • вязкость (ударная) – 120–160Дж/см2 (для ферритных композиций – не более 50);
  • температура появления окалины – 840–1120 °С;
  • магнитная проницаемость ферритных сплавов – 1,008 единиц (при комнатной температуре).

Нержавеющий сплав

Предел текучести большинства марок нержавеющих сталей за минуту равняется около 205 МПа. Эта величина справедлива для всех категорий сплавов за исключением ферритных. Показатель текучести последних обычно ниже на 10–20 МПа.

Еще одна важная характеристика рассматриваемых коррозионностойких сплавов – их теплопроводность. Под ней понимают возможность материала пропускать через себя тепловую энергию (передавать ее). Теплопроводность нержавейки равняется 16–20 Вт/м*К. Это очень малый показатель. Для сравнения скажем, что теплопроводность алюминия находится на уровне 200, а меди – 400 Вт/м*К.

Механические и технологические характеристики стали

Очень тяжело определить конкретные физические и механические свойства стали, поскольку число ее видов разнообразно ввиду различного состава и термической обработки, которые позволяют создавать материалы с широким разнообразием химических и механических характеристик. Такое разнообразие привело к тому, что производство этих материалов и их обработку начали выделять в отдельную отрасль металлургии — черную металлургию, отличающуюся от цветной металлургии. Однако общие свойства для стали привести можно, они представлены в списке ниже.

  • Объемный вес стали, то есть масса 1 м³, составляет 7850 кг. Плотность стали г см3 составляет, таким образом, 7,85.
  • В зависимости от температуры материал можно гнуть, вытягивать и плавить.
  • Температура плавления зависит от типа сплава и процентного содержания добавок. Так, чистое железо плавится при температуре 1510 °C, в свою очередь, сталь имеет точку плавления, равную 1375 °C, которая увеличивается по мере увеличения процентного содержания углерода и других элементов в ней (исключение составляют эвтектики, плавящиеся при более низких температурах). Быстрорежущая сталь плавится при температуре 1650 °C.
  • Кипит материал при температуре 3000 °C.
  • Это стойкий к деформациям материал, твердость которого повышается при добавлении других элементов.
  • Обладает относительной ковкостью (с помощью него можно получать тонкие нити путем волочения — проволоку), а также пластичностью (можно получать плоские металлические листы толщиной 0,12—0,50 мм — жесть, которая обычно покрывается оловом для предотвращения окисления).
  • Перед использованием термического воздействия сплав проходит механическую обработку.
  • Некоторые композиты обладают памятью формы и деформируются на величину, превосходящую предел текучести.
  • Твердость стали варьируется между твердостью железа и твердостью структур, которые получаются с помощью термических и химических процессов. Среди них наиболее известной является закалка, применяемая к материалам с высоким содержанием углерода. Высокая поверхностная твердость стали позволяет ее использовать в качестве режущего инструмента. Для получения этой характеристики, которая сохраняется до высоких температур, в сталь добавляют хром, вольфрам, молибден и ванадий. Измеряют твердость металла по бринеллю, викерсу и роквеллу.
  • Обладает хорошими литейными свойствами.
  • Способность подвергаться коррозии является одним из основных недостатков стали, поскольку окисленное железо увеличивается в объеме и приводит к возникновению трещин на поверхности, что, в свою очередь, еще сильнее ускоряет процесс разрушения. Традиционно металл защищали от коррозии с помощью различных поверхностных обработок. Кроме того, некоторые составы стали устойчивы к окислению, например, нержавеющие материалы.
  • Обладает высокой электропроводностью, которая не сильно изменяется в зависимости от состава сплава. В воздушных линиях электропередач чаще всего используют алюминиевые проводники, которые покрываются стальной рубашкой. Последняя обеспечивает необходимую механическую прочность проводам, а также способствует более дешевому их производству.
  • Используется для производства искусственных постоянных магнитов, поскольку намагниченная сталь не теряет свою магнитную способность до определенной температуры. При этом структура стали феррит обладает магнитными свойствами, в то время как структура аустенит не является магнитной. Магниты на основе стали для стабилизации структуры феррита содержат, как правило, около 10% никеля и хрома.
  • С увеличением температуры изделие из этого материала увеличивает свою длину. Поэтому если в той или иной конструкции существуют степени свободы, то тепловое расширение не является проблемой, если же таких степеней свободы не существует, то расширение стали приведет к появлению дополнительных напряжений, которые нужно учитывать. Коэффициент теплового расширения стали близок к таковому для бетона. Этот факт делает возможным их совместное использование в конструкциях различного типа, такой материал получил название железобетон.
  • Это негорючий материал, однако его фундаментальные механические свойства быстро ухудшаются под воздействием открытого огня.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector