Маркировка smd-резисторов: как определить назначение компонента
Содержание:
- Расшифровка маркировки советских резисторов
- Какие бывают стандарты маркировки
- Таблица маркировки SMD резисторов (код/номинал/размер/мощность) таблица
- Как правильно подобрать SMD резистор
- Основные виды и размеры SMD приборов
- Обозначение smd резисторов
- Маркировка резисторов SMD. Калькулятор онлайн
- Маркировка МЛТ резисторов
- Маркировка чип-резисторов, номиналы
- Таблица кодов SMD резисторов и их значений
- Сравнение с обычными элементами
Расшифровка маркировки советских резисторов
Маркировка советских резисторов МЛТ-1 и МЛТ-2 имеет буквенно-числовое обозначение и содержит:
- две цифры и букву;
- три цифры и букву.
Буквенный код:
- омы – R или Е;
- килоомы – К ;
- мегаомы – М.
Порядок расположения цифрового кода:
- номинал из целого числа ставился перед буквой – 33К (33 ома);
- номинал меньше единицы ставился после буквы – R 27 (0,27 ом), М68 (0,68 МОм или 680 КОм);
- номинал из целого числа с десятичной дробью разбивался на две части – целое число перед буквой, десятичную дробь после – 5K6 (5,6 КОм).
Еще одна цифра на корпусе означала отклонение от номинала сопротивления.
МЛТ-1
На корпус наносился код, которые обозначал:
- МЛТ – металлопленочный резистор с лаковым слоем термоустойчивый;
- 1– мощность рассеивания в ваттах;
- 47К – сопротивление 47 Ком;
- 5% – допустимое отклонение от номинала 5%.
Другие
Маленький размер корпуса резисторов мощностью менее 0,25 ватт не позволял нанести буквенно-числовой код, поэтому для них применялась маркировка, состоящая из четырех полос (колец) разного цвета.
Первая полоса наносилась ближе к краю резистора, остальные так, чтобы не затруднять чтение кода.
Цветовые полоски располагались слева направо и обозначали:
- Первая, вторая – номинал.
- Третья – множитель.
- Четвертая – отклонение от номинала в %.
Каждая цифра от 0 до 9 имела цветной код:
- черный – 0;
- коричневый – 1;
- красный – 2;
- оранжевый – 3;
- желтый – 4;
- зеленый – 5;
- синий – 6;
- фиолетовый – 7;
- серый – 8;
- белый – 9.
После цифр располагалась полоса, символизирующая десятичный множитель – на которое надо умножить число, образованное первыми двумя полосками:
- серебристый – 0,01;
- золотой – 0,1;
- черный – 10;
- коричневый – 100;
- красный – 1000;
- оранжевый – 10000;
- желтый – 100 000;
- зеленый – 10 000 000;
- синий – 1 000 000;
- фиолетовый – 10 000 000;
- серый – 100 000 000;
- белый – 1000 000 000.
Какие бывают стандарты маркировки
Маркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.
Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.
Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.
Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.
Тип | Наименование ЭРЭ | Зарубежное название |
A1 | Полевой N-канальный транзистор | Feld-Effect Transistor (FET), N-Channel |
A2 | Двухзатворный N-канальный полевой транзистор | Tetrode, Dual-Gate |
A3 | Набор N-канальных полевых транзисторов | Double MOSFET Transistor Array |
B1 | Полевой Р-канальный транзистор | MOS, GaAs FET, P-Channel |
D1 | Один диод широкого применения | General Purpose, Switching, PIN-Diode |
D2 | Два диода широкого применения | Dual Diodes |
D3 | Три диода широкого применения | Triple Diodes |
D4 | Четыре диода широкого применения | Bridge, Quad Diodes |
E1 | Один импульсный диод | Rectifier Diode |
E2 | Два импульсных диода | Dual |
E3 | Три импульсных диода | Triple |
E4 | Четыре импульсных диода | Quad |
F1 | Один диод Шоттки | AF-, RF-Schottky Diode, Schottky Detector Diode |
F2 | Два диода Шоттки | Dual |
F3 | Три диода Шоттки | Tripple |
F4 | Четыре диода Шоттки | Quad |
K1 | “Цифровой” транзистор NPN | Digital Transistor NPN |
K2 | Набор “цифровых” транзисторов NPN | Double Digital NPN Transistor Array |
L1 | “Цифровой” транзистор PNP | Digital Transistor PNP |
L2 | Набор “цифровых” транзисторов PNP | Double Digital PNP Transistor Array |
L3 | Набор “цифровых” транзисторов | PNP, NPN | Double Digital PNP-NPN Transistor Array |
N1 | Биполярный НЧ транзистор NPN (f < 400 МГц) | AF-Transistor NPN |
N2 | Биполярный ВЧ транзистор NPN (f > 400 МГц) | RF-Transistor NPN |
N3 | Высоковольтный транзистор NPN (U > 150 В) | High-Voltage Transistor NPN |
N4 | “Супербета” транзистор NPN (г“21э > 1000) | Darlington Transistor NPN |
N5 | Набор транзисторов NPN | Double Transistor Array NPN |
N6 | Малошумящий транзистор NPN | Low-Noise Transistor NPN |
01 | Операционный усилитель | Single Operational Amplifier |
02 | Компаратор | Single Differential Comparator |
P1 | Биполярный НЧ транзистор PNP (f < 400 МГц) | AF-Transistor PNP |
P2 | Биполярный ВЧ транзистор PNP (f > 400 МГц) | RF-Transistor PNP |
P3 | Высоковольтный транзистор PNP (U > 150 В) | High-Voltage Transisnor PNP |
P4 | “Супербета” транзистор PNP (п21э > 1000) | Darlington Transistor PNP |
P5 | Набор транзисторов PNP | Double Transistor Array PNP |
P6 | Набор транзисторов PNP, NPN | Double Transistor Array PNP-NPN |
S1 | Один сапрессор | Transient Voltage Suppressor (TVS) |
S2 | Два сапрессора | Dual |
T1 | Источник опорного напряжения | “Bandgap”, 3-Terminal Voltage Reference |
T2 | Стабилизатор напряжения | Voltage Regulator |
T3 | Детектор напряжения | Voltage Detector |
U1 | Усилитель на полевых транзисторах | GaAs Microwave Monolithic Integrated Circuit (MMIC) |
U2 | Усилитель биполярный NPN | Si-MMIC NPN, Amplifier |
U3 | Усилитель биполярный PNP | Si-MMIC PNP, Amplifier |
V1 | Один варикап (варактор) | Tuning Diode, Varactor |
V2 | Два варикапа (варактора) | Dual |
Z1 | Один стабилитрон | Zener Diode |
Таблица маркировки SMD резисторов (код/номинал/размер/мощность) таблица
смд резисторы маркировка таблица:
Код | Номинал, Вт | Размер | Мощность В |
0402 | 0.062 | Длина 1.0 ±0.1, ширина 0.5 ±0.05, высота 0.35 ±0.05 | 100 |
0603 | 0.1 | Длина 1.6 ±0.1
ширина 0.85 ±0.1 высота 0.45 ±0.05 |
100 |
0805 | 0.125 | Длина 2,1±0,1
ширина 1.3 ±0.1 высота0.5 ±0.05 |
200 |
1206 | 0.25 | Длина 3.1 ±0.1
ширина1.6 ±0.1 высота0.55 ±0.05 |
400 |
1210 | 0.33 | Длина 3.1 ±0.1
ширина 2.6 ±0.1 высота0.55 ±0.05 |
400 |
2010 | 0.75 | Длина 5.0 ±0.1
ширина 2.5 ±0.1 высота 0.55 ±0.05 |
400 |
2512 | 1 | Длина 6.35 ±0.1
ширина 3.2 ±0.1 высота 0.55 ±0.05 |
400 |
0075 | 0,02 | Длина 0,3
Ширина 0,15 |
100 |
01005 | 0,03 | Длина 0,4
Ширина 0,2 |
100 |
0201 | 0,05 | Длина 0,6
Ширина 0,3 |
100 |
1218 | 1 ; 1,5 | Длина 3,2
Ширина 4,8 |
150 |
1812 | 0,5; 0,75 | Длина 4,5
Ширина 3,2 |
200 |
На сегодняшний день есть огромное количество узкоспециализированных деталей, которые отличаются своими преимуществами и недостатками. Например, существуют конденсаторы, которые могут работать при высоких температурах, практически при 230 °C, есть такие которые рассчитаны для работы в агрессивной среде, а также появились миллиомные чип-резисторы. Есть такие конденсаторы, которые могут применяться только в определенных цепях. Таблица, приведенная выше, указывает на стандартные варианты, но мощность рассеивания на самом деле может отличаться.
Как правильно подобрать SMD резистор
Резисторы, которые изготовляются по технологии surface mount device или кратко SMD устанавливаются на поверхность платы, чаще всего при помощи паяльника присоединяются к печатным проводникам. Технология именно такого монтажа дала возможность привести к автоматизму установки компонентов, при этом применяются разные способы пайки. Используя конденсаторы SMD можно уменьшить размеры аппаратуры, а также сократить время на изготовление элемента.
Учитывая, что разновидностей существует много, необходимо знать, как их выбирать. В первую очередь стоит по достоинству оценить их преимущества и недостатки. Также нельзя выбирать компонент, не зная особенностей его применения и области, в которой он может пригодиться.
Рассматривая каждый резистор в отдельности, можно говорить о том, что он представляет собой двухвыводный компонент, который применяется для ограничения тока, распределения напряжения и формирования временных характеристик цепи. Вместе с пассивными компонентами применяются активные – это операционные контролеры, интегральные схемы, которые необходимы для того, чтобы контролировать и осуществлять смещение, фильтрацию и ввод-вывод.
Если используются переменные конденсаторы, то они необходимы исключительно для изменения параметров схемы. Такие компоненты чувствительны к току и измеряют напряжение в цепях. Что касается материала, из которого они могут изготавливаться, то тут выбор также огромен, применяется для изготовления: металлофольга, керамика, варистор, металлические, имеются фоторезисторы.
Естественно, что лучше всего выбирать наиболее точные компоненты, которые отличаются эксплуатационными характеристиками, подбирать габариты. Следует четко понимать, что какие бы технические характеристики не использовались в качестве увеличения мощности, есть еще такое понятие, как отвод тепла. Некоторые детали могут работать при больших температурах, но энергию тепла отводить необходимо. Тогда дополнительно к таким резисторам предъявляются еще и дополнительные требования в отношении монтажа на плату. Чаще всего для отвода тепла применяются контакты медных проводников, за счет этого поверхность платы может охлаждаться.
Бывает так, что в печатных платах под поверхностный монтаж элементов отводят толщу платы и специальные оборудуют медные полигоны, которые выступают в роли радиатора. Иногда, оказывается, невозможно поступить по другому, кроме как применить принудительное внешнее охлаждение, например, устанавливаются микро – вентиляторы. Среди большого выбора следует подобрать компонент, который необходим.
Основные виды и размеры SMD приборов
Корпуса компонентов для микроэлектроники, имеющие одинаковые номинальные значения, могут отличаться друг от друга габаритами. Их габариты определяются прежде всего по типовому размеру каждого. К примеру: резисторы обозначаются типовыми размеры от «0201» до «2512». Данные 4 цифры в маркировке SMD компонента обозначают кодировку, которая указывает длину и ширину прибора в дюймовом измерении. В размещенной таблице, типовые размеры указаны также и в мм.
Маркировка SMD компонентов — резисторы
Прямоугольные чип-резисторы и керамические конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | H, мм (дюйм) | A, мм | Вт |
0201 | 0.6 (0.02) | 0.3 (0.01) | 0.23 (0.01) | 0.13 | 1/20 |
0402 | 1.0 (0.04) | 0.5 (0.01) | 0.35 (0.014) | 0.25 | 1/16 |
0603 | 1.6 (0.06) | 0.8 (0.03) | 0.45 (0.018) | 0.3 | 1/10 |
0805 | 2.0 (0.08) | 1.2 (0.05) | 0.4 (0.018) | 0.4 | 1/8 |
1206 | 3.2 (0.12) | 1.6 (0.06) | 0.5 (0.022) | 0.5 | 1/4 |
1210 | 5.0 (0.12) | 2.5 (0.10) | 0.55 (0.022) | 0.5 | 1/2 |
1218 | 5.0 (0.12) | 2.5 (0.18) | 0.55 (0.022) | 0.5 | 1 |
2010 | 5.0 (0.20) | 2.5 (0.10) | 0.55 (0.024) | 0.5 | 3/4 |
2512 | 6.35 (0.25) | 3.2 (0.12) | 0.55 (0.024) | 0.5 | 1 |
Цилиндрические чип-резисторы и диоды | |||||
Типоразмер | Ø, мм (дюйм) | L, мм (дюйм) | Вт | ||
0102 | 1.1 (0.01) | 2.2 (0.02) | 1/4 | ||
0204 | 1.4 (0.02) | 3.6 (0.04) | 1/2 | ||
0207 | 2.2 (0.02) | 5.8 (0.07) | 1 |
SMD конденсаторы
Конденсаторы выполненные из керамики по размеру одинаковы с резисторами, что касается танталовых конденсаторов, то они определяются по своей, собственной шкале типовых размеров:
Танталовые конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | T, мм (дюйм) | B, мм | A, мм |
A | 3.2 (0.126) | 1.6 (0.063) | 1.6 (0.063) | 1.2 | 0.8 |
B | 3.5 (0.138) | 2.8 (0.110) | 1.9 (0.075) | 2.2 | 0.8 |
C | 6.0 (0.236) | 3.2 (0.126) | 2.5 (0.098) | 2.2 | 1.3 |
D | 7.3 (0.287) | 4.3 (0.170) | 2.8 (0.110) | 2.4 | 1.3 |
E | 7.3 (0.287) | 4.3 (0.170) | 4.0 (0.158) | 2.4 | 1.2 |
Катушки индуктивности и дроссели SMD
Индуктивные катушки могут быть выполнены в различных конфигурациях корпуса, но их значение индицируется также, исходя из типоразмеров. Такой принцип маркировки SMD и расшифровки кодовых обозначений, дает возможность значительно упростить монтаж элементов на плате в автоматическом режиме, а радиолюбителю свободнее ориентироваться.
dr>
Моточные компоненты, такие как катушки, трансформаторы и прочие, которые мы в большинстве случаев изготавливаем собственноручно, могут просто не уместится на плате. Поэтому такие изделия, также выпускаются в компактном исполнении, которые можно установить на плату.
Определить какая именно катушка требуется вашему проекту, лучше всего воспользоваться каталогом и там подобрать требующийся вариант по типовому размеру. Типовые размеры, определяют с использованием кодового обозначения маркированного 4 числами (0805). Где значение «08» определяет длину, а число «05» показывает ширину в дюймовом измерении. Фактические габариты такого SMD компонента составят 0.08х0.05 дюйма.
Диоды и стабилитроны в корпусе SMD
Что касается диодов, то они также выпускаются в корпусах как цилиндрической формы так и в виде многогранника. Типовые размеры у этих компонентов задаются идентично индуктивным катушкам, сопротивлениям и конденсаторам.
Диоды, стабилитроны, конденсаторы, резисторы | |||||
Тип корпуса | L* (мм) | D* (мм) | F* (мм) | S* (мм) | Примечание |
DO-213AA (SOD80) | 3.5 | 1.65 | 048 | 0.03 | JEDEC |
DO-213AB (MELF) | 5.0 | 2.52 | 0.48 | 0.03 | JEDEC |
DO-213AC | 3.45 | 1.4 | 0.42 | — | JEDEC |
ERD03LL | 1.6 | 1.0 | 0.2 | 0.05 | PANASONIC |
ER021L | 2.0 | 1.25 | 0.3 | 0.07 | PANASONIC |
ERSM | 5.9 | 2.2 | 0.6 | 0.15 | PANASONIC, ГОСТ Р1-11 |
MELF | 5.0 | 2.5 | 0.5 | 0.1 | CENTS |
SOD80 (miniMELF) | 3.5 | 1.6 | 0.3 | 0.075 | PHILIPS |
SOD80C | 3.6 | 1.52 | 0.3 | 0.075 | PHILIPS |
SOD87 | 3.5 | 2.05 | 0.3 | 0.075 | PHILIPS |
Транзисторы в корпусе SMD
СМД транзисторы выполнены в корпусах, которые соответствуют их максимальном мощности. Корпуса этих полупроводниковых элементов символично можно разделить на два вида: SOT и DPAK.
Маркировка SMD компонентов
Маркировка электронных приборов в современной технике уже требует профессиональных знаний, и так просто, с кондачка в ней тяжело разобраться, особенно начинающему радиолюбителю. В сравнении с деталями выпускаемыми при Советском Союзе, где маркировка номинального значения и тип прибора наносилась в текстовом варианте, сейчас это просто мета паяльщика. Не надо было держать под рукой кипы справочной литературы, чтобы определить назначение и параметры того или иного прибора.
Однако, технологические процессы в промышленности не стоят на месте и автоматизация производства определяет свои правила. Именно SMD детали в поверхостном монтаже играют главную роль, а роботу нет никакого дела до маркировки деталей заправленных в машину, что туда поместили, то он и припаяет. Маркировка нужна специалисту, который обслуживает этого робота.
Скачать программу для расшифровки обозначения SMD деталей
Обозначение smd резисторов
Существуют две системы маркировки или если хотите обозначения резисторов.
Например, 0204 = 0,02 (длина) x 0,04 (длина) (все указано в дюймах).
В другой системе – метрической (metric), обозначение уже в миллиметрах.
Например, 0510 = 0,5 (длина) x 1,0 (ширина) (в миллиметрах).
И это будет тот же самый 0204 резистор, который был в дюймах. Дабы путать одну систему с другой, в технической документации для метрической системы часто дописывают букву М, но не факт, после числового кода (скажем, 0510М).
Теперь приведу весьма полезную справочную информацию.
Обозначение (длина, ширина, мощность) элемента (резистора).
В дюймах (inch) |
L, длина, length (дюймы) |
W, ширина, width (дюймы) |
Метрический (metric) |
L, длина в мм. |
W, ширина в мм. |
0050 |
0,008 |
0,004 |
0201М |
0,2 |
0,1 |
0075 |
0,012 |
0,006 |
03015М |
0,3 |
0,15 |
01005 |
0,016 |
0,008 |
0402М |
0,4 |
0,2 |
0201 (02016) |
0,02 |
0,01 |
0603М |
0,6 |
0,3 |
0202 |
0,02 |
0,02 |
0605М |
0,6 |
0,5 |
0204 |
0,02 |
0,04 |
0510M |
0,5 |
1,0 |
0303 |
0,03 |
0,03 |
0808M |
0,8 |
0,8 |
0306 |
0,03 |
0,06 |
0816М |
0,8 |
1,6 |
0402 |
0,04 |
0,02 |
1005М |
1,0 |
0,5 |
0404 |
0,04 |
0,04 |
1010М |
1,0 |
1,0 |
0406 |
0,04 |
0,06 |
1016M |
1,0 |
1,6 |
0408 |
0,04 |
0,08 |
1020М |
1.0 |
2,0 |
0502 |
0,05 |
0,02 |
1406M |
1,4 |
0,6 |
0504 |
0,05 |
0,04 |
1210M |
1,2 |
1,0 |
0505 |
0,05 |
0,05 |
– |
1,2 |
1,2 |
0508 |
0,05 |
0,08 |
1220М |
1,2 |
2,0 |
0510 |
0,05 |
0,1 |
– |
1,2 |
2,5 |
0603 |
0,06 |
0,03 |
1608М |
1,6 |
0,8 |
0606 |
0,06 |
0,06 |
1616М |
1,6 |
1,6 |
0612 |
0,06 |
0,12 |
1632М |
1,6 |
3,2 |
0616 |
0,06 |
0,16 |
1640М |
1,6 |
4,0 |
0805 |
0,08 |
0,05 |
2012М |
2,0 |
1,25 |
0808 |
0,08 |
0,08 |
2020М |
2,0 |
2,0 |
0815 |
0,08 |
0,15 |
2037М |
2,0 |
3,7 |
0830 |
0,08 |
0,30 |
2075М |
2,0 |
7,5 |
1005 |
0,1 |
0,05 |
2512M |
2,5 |
1,2 |
1008 |
0,1 |
0,08 |
2520М |
2,5 |
2,0 |
1010 |
0,1 |
0,1 |
2525М |
2,5 |
2,5 |
1020 |
0,1 |
0,2 |
2550M |
2,5 |
5,0 |
1206 |
0,12 |
0,06 |
3216М |
3,2 |
1,6 |
1210 |
0,12 |
0,1 |
3225М |
3,2 |
2,5 |
1218 |
0,12 |
0,18 |
3245М (3248M) |
3,2 |
4,5-4,8 |
1224 |
0,12 |
0,24 |
3250М |
3,2 |
5,0 |
1225 |
0,12 |
0,25 |
3264М |
3.2 |
6,4 |
1505 |
0,15 |
0,05 |
3812М |
3,8 |
1,2 |
1806 |
0,18 |
0,06 |
4516M |
4.5 |
1,6 |
1808 |
0,18 |
0,08 |
4520M |
4,5 |
2,0 |
1812 |
0,18 |
0,12 |
4532М |
4,5 |
3,2 |
1825 |
0,18 |
0,25 |
4564М |
4,5 |
6,4 |
2007 |
0,2 |
0,07 |
5320М |
5,3 |
2,0 |
2010 |
0,2 |
0,1 |
5025М |
5,0 |
2,5 |
2220 |
0,22 |
0,2 |
5750М (5650M) |
5,7-5,6 |
5,0 |
2225 |
0,22 |
0,25 |
5664М |
5,6 |
6,4 |
2512 |
0,25 |
0,12 |
6432М (6332M) |
6,4-6,3 |
3,2 |
3014 |
0,30 |
0,14 |
7836М |
7,8 |
3,6 |
3921 |
0,39 |
0,21 |
1052М |
10,0 |
5,2 |
4527 |
0,45 |
0,27 |
11070М (11470М) |
11,0-11,4 |
7,0 |
5931 |
0,59 |
0,31 |
1577М |
15,0 |
7,75 |
6927 |
0,69 |
0,27 |
17570M |
17,5 |
7,0 |
Здесь стоит сказать о следующем. Не смотря на то, что речь шла о резисторах, аналогия в корпусах проводится и с другими радиоэлементами. Такие обозначения размеров также используются и для керамических SMD-конденсаторов (2220, 2225, 1825, 0505, 0204 и др.), резисторных SMD-сборок, SMD-светодиодов.
Маркировка резисторов SMD. Калькулятор онлайн
Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов — двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы
Трёхсимвольная маркировка EIA96
Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.Первые две цифры — код номинала от 01 до 96 соответствует числу номинала от 100 до 976 согласно таблице.Третий символ — буква — код множителя. Каждая из букв X, Y, Z, A, B, C, D, E, F, H, R, S соответствует множителю согласно таблице.Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96, E24, E48.
Сопротивление 0ом ±1%, EIA-96 в результате вычислений означает некорректный ввод.
Впишите код стандарта EIA-96 (регистр не учитывается), либо 3 цифры E24, либо 4 цифры E48
Сопротивление: 165ом ±1%, EIA-96
Таблица EIA-96
|
|
Трёхсимвольная маркировка E24. Допуск 5%
Маркировка из трёх цифр. Первые две цифры — число номинала.
Третья цифра — десятичный логарифм множителя.
0=lg1, множитель 1.1=lg10, множитель 10.2=lg100, множитель 100.3=lg1000, множитель 1000.И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
В данной статье используйте окно калькулятора выше, что и для EIA-96.
Четырёхсимвольная маркировка E48. Допуск 2%
Маркировка состоит из четырёх цифр. Первые три цифры — число номинала.
Четвёртая цифра — десятичный логарифм множителя.
0=lg1, множитель 1.1=lg10, множитель 10.2=lg100; Множитель 100.
3=lg1000, множитель 1000.И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48), либо вводить 4 цифры в общее верхнее окно.
Введите код SMD резистора E48
Сопротивление: 22.2kом ±2%, E48
Формулы и расчёты электронный цепей онлайн |
Параметры синусоидального сигналаПеременный ток. Параметры |
Постоянный ток. Определение |
Электроника в домах. ФорумТранзисторы. Справочник |
Диоды. Справочник |
Стабилитроны. Справочник |
Реактивное сопротивлениеРезонансная частота |
ESR конденсатора |
Измерение ESR |
Отключить защиту инвертора
Замечания и предложения принимаются и приветствуются!
Маркировка МЛТ резисторов
Самым простым в части оценки является советский резистор, номинал его мощности наносится прямо на корпусе маркировкой МЛТ-1 и так далее, где единица измерения – это мощность, а МЛТ – это вид наиболее ходовые в свое советское время резисторы а эта сокращение означает что резистор М- металлопленочный, Л- лакированный, Т-термоустойчивый. Мощность таких резисторов зависит от их размеров, чем больше размеры резистора – тем большую мощности он способен рассеять. Эти резисторы уже вымирающий вид, найти их можно в старой радиоэлектронной технике.
Для резисторов МЛТ типа единицей измерения сопротивления как и у других выступают Омы, обозначаются они как R и E. Точный размер мощности обозначает дополнительной буквой «К» – килоомы или буквой «М» — мегаомы, система измерения здесь достаточно проста. Например: 33E – это 33 Ома, а 47К – это 47 кОм, соответственно 1М2 – 1.2 Мегаом и так далее.
Пример обозначения резисторов МЛТ:
Маркировка чип-резисторов, номиналы
Прочитав обозначение 2r00 резистора, как определить, на какое сопротивление он рассчитан? Для этого существует маркировка smd резисторов. Это можно сделать с помощью таблиц, где указан перечень характеристик, согласно обозначению на корпусе. Также цифровую маркировку поможет расшифровать программа онлайн-калькулятор. Интерфейс этого сетевого инструмента выглядит просто и работает быстро. Достаточно для этого вбить в окна полей необходимый запрос.
Онлайн-калькулятор для расчёта цифровых обозначений
При визуальном осмотре элемента маркировка смд резисторов может иметь следующие знаки, нанесённые на корпус:
- цифровые маркировки;
- буквенные символы;
- цветовые маркеры.
Они наносятся непосредственно на верхнюю часть корпуса и имеют различное значение.
Цифровые маркировки
Код, нарисованный на резистивном элементе, может состоять из трёх или четырёх цифр. Трёхцифровое обозначение расшифровывается легко. К примеру, у резистора 103 сколько ом величина сопротивления, указывают две первые цифры, третья – это множитель, на который умножается двухзначное число. В математике это показатель степени числа с основанием 10.
Внимание! Множитель в этом случае – степень n, в которую необходимо возвести число 10. Следовательно, чип-резистор 104 имеет номинал 10*104 = 100 кОм
Маркировка при помощи трёх цифр позиционирует элементы, имеющие допуск погрешности: 2; 5; 10%.
Трёхзначное цифровое обозначение
Маркировка резисторов меньше 1 Ом
Соответствующая отметка на детали, как и для сопротивлений менее 10 Ом, требует ввода в код буквы R. Она ставится либо впереди двух цифр, либо в середине и заменяет собой десятичную точку.
Обозначение SMD-резисторов
Цветовое обозначение
Цветовой способ маркировки резисторов применяется для элементов, имеющих маленький типоразмер. Однако для смд-сопротивлений он не применяется. По цветной палитре колец можно определить: номинал, множитель и температурный коэффициент (ТКС). Цветное кольцо, опоясывающее элемент, имеет определённый цвет, ширину и месторасположение.
Некоторые особенности при нанесении цветной маркировки, которые могут интерпретироваться следующим образом:
- У деталей с погрешностью 20% 3 кольца. Два первых – величина сопротивления, третье – множитель.
- Четыре кольца означают, что допуск отличен от 20% и обозначен четвёртым кольцом.
- Пять цветных колец имеют другое значение. Три первых – номинал детали, четвёртое – значение множителя, пятое – величина допуска в 0,005%.
ТКС, он же TCR (Temperature Coefficient of Resistance), показывает, насколько поменяется величина сопротивления двухполюсника при изменении температуры в один градус. Температура может меняться в любом направлении.
Шестая полоса (редкий случай) укажет значение TCR для резистора. Использование в схемах чувствительных к изменению температурного режима окружающей среды требует установки элемента с определённым значением TCR.
Расшифровка цветных маркеров
Буквенная маркировка
Стандарт EIA – 96 допускает при кодировке SMD-чипов резистивной направленности ввод буквы третьим символом.
Расшифровка мнемонического обозначения буквами
При требовании к допуску в 1% маркировка имеет трёхзначные или четырёхзначные обозначения на корпусе деталей.
Две цифры и буква у таких smd резисторов, имеющих типоразмер 0603, распределены следующим образом:
- две первых цифры – сопротивление в Ом;
- буква – это множитель: S, R, B, C, D, E, F.
Данные по сопротивлениям с трёхзначным кодом определяют по таблицам.
Таблица кодов для первых двух цифр при допуске в 1%
Нумерация с использованием 4-х цифр при данном допуске отклонения от точности означает:
- три первых цифры – мантисса (дробная часть десятичного числа);
- четвёртая цифра – показатель степени числа 10.
Например, резистивный элемент с меткой 3501 обладает номиналом 350*10 = 3,5 кОм.
Интересно. Когда на детали нарисован ноль «0», это значит смд-резистор имеет нулевое значение сопротивления. Это просто перемычка. При измерении тестером результат не должен вводить в заблуждение – элемент исправен.
При замене неисправных элементов, расположенных на печатной плате, правильное определение номинального значения поможет устранить повреждение. В случае необходимости можно smd-компоненты заменить на детали аналогичных параметров, расшифровав цифровые и буквенные коды.
Таблица кодов SMD резисторов и их значений
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
---|---|---|---|---|---|---|---|
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
---|---|---|---|---|---|---|---|
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 МОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 МОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 МОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 МОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 МОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 МОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 МОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 МОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 МОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 МОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 МОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 МОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 МОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 МОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 МОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 МОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 МОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 МОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 МОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 МОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 МОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 МОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 МОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 МОм |
Сравнение с обычными элементами
Помните, мы с вами ремонтировали материнскую плату компьютера и меняли конденсаторы и полевые транзисторы? Это достаточно крупные элементы, на которых можно невооружённым взглядом прочесть маркировку. Конденсаторы в низковольтном стабилизаторе напряжения ядра процессора на материнской плате нельзя сделать очень маленькими. Для должной фильтрации пульсаций они должны обладать емкостью в несколько сотен микрофарад. Такую емкость не втиснешь в маленький объем.
Полевые транзисторы в этом стабилизаторе тоже нельзя сделать очень маленькими. Через них протекают токи в десятки ампер. Используются полевые транзисторы с очень небольшим сопротивлением открытого канала — десятые и сотые доли Ома. Но при таких токах они могут рассеивать мощность в половину Ватта и больше. Протекание тока по открытому каналу вызывает нагрев транзистора. Тепло при этом излучается в окружающее пространство через площадь корпуса транзистора. Если корпус будет очень маленьким, транзистор не сможет рассеять тепло и сгорит.
Кстати, обратите внимание: полевые транзисторы припаяны корпусом к площадкам печатной платы. Медные площадки хорошо проводят тепло, поэтому теплоотвод получается более эффективным
Но есть на той же материнской плате компоненты, по которым не протекают большие токи, и они не рассеивает большой мощности. Поэтому их можно сделать очень небольшими. Если мы заглянем внутрь компьютерного блока питания, то увидим там очень небольшие по размерам конденсаторы и резисторы. Они используют в цепях управления и обратной связи.
Такие элементы выглядят как цилиндрик или кирпичик с тонкими проволочными выводами. Монтаж этих компонентов ведется традиционным способом: через отверстия в плате элемент припаивается выводами к контактным площадкам платы. Это технология была освоена десятки лет назад. Е
е недостаток в том, что в плате нужно сверлить десятки или сотни отверстий. Это не самая простая технологическая операция. Чтобы избавиться от сверления (или уменьшить число отверстий) и уменьшить размеры готовых изделий, и придумали SMD компоненты. Материнские платы компьютеров содержат как обычные элементы с проволочными выводами, так и SMD компонентов. Последних – больше.