Справочник. корпуса и маркировка компонентов (smd)

Какие материалы используют для изготовления резисторов?

В качестве материалов используют сплавы высоко сопротивления, напыление материала на керамическую основу и уголь. Резисторы могут использоваться дискретно, как отдельный элемент, так и в составе интегральных электросхем.

В одном компьютере около нескольких тысяч резисторов и отобразить их все на схеме весьма сложно.

Как отличить резисторы на электросхемах?

Любой тип резистора на схемах отечественных производителей отображается в виде прямоугольника. На некоторых  зарубежных схемах в виде зигзагообразной линии. Подключение к схеме указывается линиями, нарисованными от середины сторон прямоугольника. Если резистор меняет своё сопротивление от воздействия внешних факторов (управление оператором или действие окружающей среды), то на схеме добавляется дополнительная линия или отрезок со стрелкой на конце или без, расположенный к середине прямоугольника или пересекает его.

Но есть ещё резисторы, изменяющие свои характеристики, которые можно использовать для своих целей. Когда в качестве материала для изготовления резистора используют высокотемпературные сплавы и подают на него напряжение, то такой резистор превращается в источник тепла. Как правило, такие элементы всегда проволочные и могут быть открытого и закрытого типа, то есть помещаться внутрь полости, изолирующей его от внешней среды.

Самый широко распространённый подобный элемент — это трубчатый электронагреватель (ТЭН). Используется везде, где требуется получить тепло. Ну, да. Вы догадались. Это бойлер, котёл, плита, чайник и многие другие электронагревательные приборы.

На схемах такие сопротивления обозначаются прямоугольником, разделённым внутри на четыре равные части. Буквенное обозначение термоэлемента всегда одно — EK.

Основными характеристиками резистора являются: указанное на нём величина сопротивления, которая является его номинальным значением; номинальная мощность рассеяния и возможные отклонения действительного значения сопротивления от номинального, указанного на корпусе.

Мощность электрического тока, которую резистор может длительное время выдержать и рассеивать в виде тепла без ущерба для его работы, принято называть мощностью рассеяния и обозначать её в ваттах.

К примеру: резистор с сопротивлением 100 Ом пропускающий через себя электрический ток силой 0,1А, рассеивает мощность в виде тепла около 1Вт. При меньшей расчётной характеристике мощности рассеяния резистора и большем токе, проходящем через него, данный резистор быстро сгорает, то есть электрически недостаточно прочен.

Обозначение мощности на рисунке с резистором наносится непосредственно в значок, отображающий резистор или рядом с ним и выражается в виде римских цифр, за исключением указанной мощности 0,5Вт — поперечная черта, 0,25Вт — одна косая черта, 0,125Вт — две косые черты.

Отклонение действительного сопротивления от номинального выражают в процентах. К примеру: номинал резистора 100Ом с допуском 10% означает, что фактическое — действительное сопротивление может находится в пределах от 90Ом до 110Ом. Чем меньше величина процента указана на корпусе резистора, тем более близка действительная величина сопротивления к указанной.

Как понять какой резистор?

Когда на схеме обозначены два вывода, это значит, что резистор постоянный и рабочее сопротивление его не изменяется в нормальном режиме. А вот третий вывод или пересекаемая линия говорят о переменном, подстроечном или нелинейном сопротивлении (зависит от внешних факторов: свет, влага, температура, магнитное поле,  напряжение, освещённость).

Обозначение у каждого типа своё: на рисунке постоянных, переменных и подстроечных резисторов рядом наносится буква R; нелинейные  — обозначаются буквой R с добавленным буквенного символом, в зависимости от типа воздействия физического фактора (температура — t, напряжение — u и т.д.). Пример: Ru, Rt. Символ может стоять рядом и может указываться на дополнительной линии, пересекаемой изображение резистора.

Варистор (сопротивление зависит от приложенного напряжения) — Ru.

Термистор (сопротивление зависит от температуры) — Rt.

Фоторезистор (сопротивление зависит от его освещённости) — Rf.

Величина сопротивления резисторов указывается на рисунке рядом с изображением резистора, в изображении или в специальной таблице величин, приложенной к схеме.

Маркировка на корпусе резисторов наносится цифровая или цветовая, которая более удобна при определении всех величин сопротивления.

Как определить прибор на электросхеме

Как определить конденсатор на схеме

«Подписаться на рассылку» 1 445

Таблица маркировки резисторов.

Обычные резистивные элементы почти независимы от показаний температуры.

Резистивный элемент — это элемент, безвозвратно забирающий электроэнергию от источников и преобразующий эту энергию в другие ее виды (тепловую, излучения, механическую, химическую и др.). 

Эта несущественная зависимость носит линейный характер, так как есть возможность не брать в учет коэффициенты 2 и 4 порядка

Если принять во внимание температурный коэффициент, обычный резистор можно превратить в термометр. Рассматривая полупроводниковые резисторы, можно заметить влияние на них температуры в большей степени

Эта зависимость представлена экспоненциальной функцией, которая в определенных температурных диапазонах может быть линейной и использоваться в практических целях.

Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью последовательное и параллельное соединение резисторов, в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления. Во второй части статьи мы познакомимся с резисторами переменного сопротивления.
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Цветовая маркировка на корпусе резисторов.

Цветовую маркировку, когда она появилась, я пытался запомнить и даже вызубрить – но ничего хорошего из этого не получалось, все равно путался, и номинал резистора приходилось определять тестером. Сейчас уже не помню когда, но в одном журнале мне попалась статья как все это дело можно избежать. Там рассказывалось про шпаргалку, сделанную в виде резистора, только вместо цветных полос стоят колесики, на которых написаны цвета участвующие в обозначении номинала резисторов.Я Вам рекомендую потратить около двух часов, но сделать такую шпаргалку. Не пожалеете. Будете еще вспоминать меня, как я автора той статьи.

Давайте просто рассмотрим пример изображенный на фотографии. Допустим, у нас есть резистор с такими цветами: зеленыйсинийкрасный. Нам надо определить его номинал:

Первым колесиком выбираете цвет первой полоски (зеленый), вторым колесиком – цвет второй полоски (синий), и третьим колесиком цвет третьей полоски (красный) – это у нас будет множитель. Теперь полученную цифру в первых двух окнах, а у нас получилось 56, умножаем на множитель, полученный в третьем окошке – это десять в квадрате или 100. В итоге получилось 5600 Ом или 5,6 кОм. Как видите в употреблении шпаргалка очень простая.Конечный результат всегда будет в Омах, но его не сложно перевести в килоомы или мегаомы:

1000 Ом – это 1 кОм;10000 Ом – это 10 кОм;100000 Ом – это 100 кОм;1000 кОм – это 1 мегаом или 1000000 Ом;10 М – это 10000 кОм или 10000000 Ом.

А теперь сама конструкция. Для ее изготовления, я использовал картон, но Вы можете использовать любой другой материал легко поддающийся обработке. Если будете использовать картон, то для прочности его желательно склеить в два слоя. Чертеж рисовать не стал, а все размеры указал прямо на шпаргалке, потому что мне так проще, а Вам понятнее. Размеры указаны в миллиметрах.

Следующим этапом нам надо сделать три колесика. Первые два будут одинаковые, и на них наносятся цвета полосок и цифры, соответствующие каждому цвету. Колесико надо разделить на десять равных частей, и если Вы посмотрите на правое, то здесь видно, что, например, коричневому цвету соответствует единица, а черному — ноль.

Последовательность такая:

Черный – 0;Коричневый – 1;Красный – 2;Оранжевый – 3;Желтый – 4;Зеленый – 5;Синий – 6;Фиолетовый – 7;Серый – 8;Белый – 9.

Третье колесико отличается только тем, что каждому цвету соответствует своя степень числа.

Здесь последовательность такая:

Черный – 1;Коричневый – 10;Красный – 10 в степени 2 (100);Оранжевый – 10 в степени 3 (1000);Желтый – 10 в степени 4 (10000);Зеленый – 10 в степени 5 (100000);Синий – 10 в степени 6 (1000000);Фиолетовый – 10 в степени 7 (10000000);Серый – 10 в степени 8 (100000000);Белый – 10 в степени 9 (1000000000);Золотистый – 10 в степени -1 (0.1);Серебряный – 10 в степени -2 (0.01).

Теперь осталось всю эту конструкцию собрать.
Колесики крепите болтами диаметром 3мм. Пользуйтесь на здоровье.

В любом случае, если ничего не получится, сопротивление резистора можно всегда измерить мультиметром. Почитайте эту статью, я там все подробно описал.

Ну и напоследок совет. Если возникнут сомнения в определении полосы первого числа, ориентируйтесь по полосе допуска, которая находится с правой стороны резистора. Как правило, основная масса резисторов идет с допуском пять и десять процентов, а это золотистый и серебряный цвета.
Удачи!

Цепи, состоящие из резисторов

Основная статья: Последовательное и параллельное соединение

Последовательное соединение резисторов

При последовательном соединении резисторов их сопротивления складываются

R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }

Доказательство

Так как общая разность потенциалов равна сумме её составляющих: U=U1+U2+U3+…{\displaystyle U=U_{1}+U_{2}+U_{3}+\ldots }

А из закона Ома падение напряжения Ui{\displaystyle U_{i}} на каждом сопротивлении Ri{\displaystyle R_{i}} равно: Ui=IiRi{\displaystyle U_{i}=I_{i}R_{i}}

при этом из закона сохранения заряда, через все резисторы идёт одинаковый ток I{\displaystyle I}, поэтому подставляя в формулу для суммы напряжений закон Ома, записываем: IR=IR1+IR2+IR3+…{\displaystyle IR=IR_{1}+IR_{2}+IR_{3}+\ldots }

Делим всё на ток I{\displaystyle I} и получаем: R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=nR1{\displaystyle R=nR_{1}}

При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.

Параллельное соединение резисторов

При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость 1R{\displaystyle {\frac {1}{R}}} складывается из проводимостей каждого резистора 1Ri{\displaystyle {\frac {1}{R_{i}}}})

1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.

Доказательство

Так как заряд при разветвлении тока сохраняется, то: I=I1+I2+I3+…{\displaystyle I=I_{1}+I_{2}+I_{3}+\ldots }

Из закона Ома ток Ii{\displaystyle I_{i}} через каждый резистор равен: Ii=UiRi{\displaystyle I_{i}={\frac {U_{i}}{R_{i}}}}, но разность потенциалов на всех резисторах будет одинакова, поэтому перепишем уравнение суммы токов: UR=UR1+UR2+UR3+…{\displaystyle {\frac {U}{R}}={\frac {U}{R_{1}}}+{\frac {U}{R_{2}}}+{\frac {U}{R_{3}}}+\ldots }

Делим всё на U{\displaystyle U} и получаем общую проводимость 1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }, и общее сопротивление R=11R1+1R2+1R3+…{\displaystyle R={\frac {1}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }}}

Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{\displaystyle R={\frac {R_{1}R_{2}}{R_{1}+R_{2}}}}.

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=R1n{\displaystyle R={\frac {R_{1}}{n}}}

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Смешанное соединение резисторов

Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов R1{\displaystyle R_{1}} и R2{\displaystyle R_{2}}, общим сопротивлением R1+R2{\displaystyle R_{1}+R_{2}}, другой из резистора R3{\displaystyle R_{3}}, общая проводимость будет равна 1R=1(R1+R2)+1R3{\displaystyle {\frac {1}{R}}={\frac {1}{(R_{1}+R_{2})}}+{\frac {1}{R_{3}}}}, то есть общее сопротивление R=R3(R1+R2)R1+R2+R3{\displaystyle R={\frac {R_{3}(R_{1}+R_{2})}{R_{1}+R_{2}+R_{3}}}}.

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

Кодовая маркировка резисторов — Практическая электроника

Иногда попадаются SMD резисторы, у которых маркировка выглядит очень странно. Не пугайтесь, это простая кодовая маркировка, которую используют некоторые производители радиоэлектронных компонентов. Это может выглядеть как-то так:

или даже так:

Как определить значение сопротивления таких резисторов? Для этого существует таблица, с помощью которой вы легко сможете определить номинал любого резистора с кодовой маркировкой. Итак,  в первых двух цифрах засекречен номинал сопротивления резистора, а буква — это множитель.

Вот собственно и таблица:

Буквы: S=10-2; R=10-1; А=1; В= 10; С=102; D=103; Е=104; F=105

Значит, сопротивление этого резистора у нас будет 140х104=1,4 МегаОма.

А сопротивление этого резистора у нас будет 102х102=10,2 КилоОма.

Выбираем маркировку фирмы BOURNS

Нажимаем «Далее». У нас появится вот такое окошко:

Ставим маркер на «3 символа».  И набираем нашу кодовую маркировку. Например, тот же самый резистор с маркировкой 15Е. Внизу, слева в рамке, мы видим значение сопротивления этого резистора. Все элементарно и просто! Про другие виды маркировки резисторов можно прочитать здесь .

Погрешность

Маркировка с четырьмя-пятью полосами для выводных резисторов стала уже традиционной. Она указывает на точность. Чем больше полос, тем выше этот показатель. SMD-резисторы для поверхностного монтажа на плате с допусками на 2, 5 и 10 процентов обозначаются цифрами. Первый порядок цифр необходимо умножить на десять в третьей степени.

Буква «R» указывает на точку десятичной дроби. Например, маркировка R473 показывает, что 0,47 необходимо умножить на десять в третьей степени, что в сумме составит 470 Ом. Остальные две цифры и букву применяют для обозначения типоразмеров. Буква указывает на показатель степени десятки.

Резисторы являются одним из важных компонентов печатной платы. Они не только понижают напряжение и ток, а также рассеивают тепло. Каждый компонент имеет цветные полоски, соответствующие их номинальным характеристикам.

Определение маркировки резисторов.

Для того, чтобы не путаться в обозначениях, маркировка резистора выполняется согласно ГОСТ 2.728-74. Этим документом нормируется и схемное обозначение постоянного сопротивления, который имеет вид:

Обозначение по ГОСТ 2.728-74 Описание
Постоянный резистор без указания номинальной мощности рассеивания.
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт
Постоянный резистор номинальной мощностью рассеивания 1 Вт
Постоянный резистор номинальной мощностью рассеивания 2 Вт
Постоянный резистор номинальной мощностью рассеивания 5 Вт
Постоянный резистор номинальной мощностью рассеивания 10 Вт

Маркировка и взаимозамена

Электронные компоненты для поверхностного монтажа прочно вошли в нашу жизнь и сегодня составляют не менее 70% от числа всех производимых про­мышленностью электронных приборов и устройств. Чтобы иметь представле­ние о виде этих приборов, достаточно открыть корпус любого современного устройства, например мобильного телефона. В далеком прошлом элементы SMD можно было увидеть разве что в наручных электронных часах и разработ­ках ВПК.

SMD (Surface Mounted Device) — это компоненты, предназначенные для поверхностного монтажа. SMD резисторы и конденсаторы выглядят как кирпичики.

Сегодня любой современный печатный монтаж, сделанный производствен­ным способом (то есть серийно), немыслим без этих электронных компонен­тов, имеющих малые размеры и поверхностный монтаж на плате. Поэтому они получили названия планарных элементов в SMD (SMT) корпусах. Эти эле­менты не очень популярны среди радиолюбителей именно из-за трудностей монтажа: используется технология насыщения, минимизация и интеграция до­рожек и мест для пайки элементов в печатном монтаже. А для ремонтников- профессионалов и опытных радиолюбителей SMD-элементы – основной рабо­чий материал.

SMD транзистор на схеме

Как по маркировке правильно определить тип установленного в плату SMD- прибора, быстро и точно найти замену, подскажет предлагаемый материал. Поскольку многие корпуса внешне похожи друг на друга, важнейшее значе­ние приобретают их размеры, а для идентификации прибора необходимо знать не только маркировку, но и тип корпуса.

Возможна ситуация, когда фирмы-производители в один и тот же корпус под одной и той же маркировкой помещают разные по назначению и электричес­ким характеристикам приборы. Так, фирма Philips помещает в корпус SOT-323 мини-транзистор n-p-n проводимости BC818W и маркирует его кодом Н6, а фирма Motorola в такой же корпус с точно такой же маркировкой Н6 помеща­ет р-п-р транзистор MUN5131T1.

Можно спорить о частоте таких совпадений, но они нередки и встречаются даже среди продукции одной фирмы. Так, у фирмы Siemens в корпусе SOT-23 (аналог КТ-46) с маркировкой 1А выпускают- ся транзисторы ВС846А и SMBT3904, естественно, с разными электрическими параметрами. Различить такие совпадения может только опытный человек по окружающим компонентам обвески и схеме включения.

К сожалению, иногда путаница наблюдается и с цоколевкой выводов элемен­тов в одинаковых SMD-корпусах, выпускающихся разными фирмами. Это про­исходит из-за неоправданно большого количества действующих стандартов, регламентирующих требования к таким корпусам.
Практически каждая зару­бежная фирма-производитель работает по своим стандартам. Это происходит потому, что органы стандартизации не поспевают за разработками производи­телей. Однако есть тенденция к единой стандартизации корпусов и обозначе­ний элементов для поверхностного монтажа.

Таблица условных обозначений (маркировки) на корпусах SMD транзисторов для поверхностного монтажа, их тип и аналоги.

А пока встречаются элементы, корпус которых имеет стандартные размеры, но нестандартное название. Корпуса с одним и тем же названием могут иметь разную высоту. Она зависит от емкости и рабочего напряжения конденсаторов и величины рассеиваемой мощности резисторов.

Внутренняя структура

Основным несущим элементом резистора является подложка, изготовленная из окиси аллюминия  (Al2O3). Этот материал обладает хорошими диэлектрическими свойствами, но помимо этого имеет очень высокую теплопроводность, что необходимо для отвода тепла, выделяющегося в резистивном слое, в окружающую среду.

Внутренняя структура резистора.

Основные (но не все) электрические характеристики резистора определяются резистивным элементом, в качестве которого чаще всего используется пленка металла или окисла, например, чистого хрома или двуокиси рутения, нанесенная на подложку.

Состав, технология нанесения на подложку и характер обработки этой пленки являются важнейшими элементами, определяющими характеристики резистора, и чаще всего представляют производственный секрет фирмы производителя.

Некоторые виды – резисторы проволочные – в качестве резистивного материала используют тонкую (до 10 мкм) проволоку из материала с низким температурным коэффициентом сопротивления (например, константана), намотанную на подложку. В последнем случае номинал резистора обычно не превышает 100 Ом.

Для соединения резистивного элемента с проводниками печатной платы служат несколько слоев контактных элементов. Внутренний контактный слой обычно выполнен из серебра или палладия, промежуточный слой представляет собой тонкую пленку никеля, а внешний – свинцово-оловянный припой.

Такая сложная контактная конструкция предназначена для обеспечения надежной взаимной адгезии слоев. От качества выполнения контактных элементов резистора зависят такие его характеристики, как надежность и токовые шумы. Последним элементом конструкции SMD резистора является защитный слой, обеспечивающий предохранение всех элементов конструкции резистора от воздействия факторов окружающей среды и в первую очередь от влаги. Этот слой выполняется из стекла или полимерных материалов.

Что написано на SMD резисторах

Для поверхностного монтажа на печатных платах обычные виды резисторов применят неудобно. Поэтому были разработаны специальные технологии, позволяющие делать их маленькими — длинной и шириной в несколько миллиметров. Это позволяет использовать площадь плат по максимуму. Но на миниатюрных резисторах даже цветовую маркировку нанести сложно. Поэтому для SMD резисторов разработана своя маркировка — цифро-буквенная. Есть три варианта этой маркировки:

  • три цифры;
  • четыре цифры;
  • три цифры и буква.

Несколько примеров того, как надо высчитывать номинал SMD резистора

Для резисторов SMD со средней погрешностью

Первые два варианта маркировки резисторов — три или четыре цифры — применяют для резисторов со средней погрешностью (допустимое отклонение 5-10%). В них первые две или три цифры — это номинал, последняя определяет множитель. Эта цифра, показывает в какую степень надо возвести 10. Для тех у кого нелады с возведением в степень, множитель прописан на рисунке ниже. Можно также сказать, что последняя цифра показывает, сколько нулей в множителе.

Правило расшифровки кодов номиналов SMD сопротивлений

Принцип нахождения номинала похож на цифро-буквенную маркировку советских резисторов. Первые две или три цифры надо умножить на множитель. Чтобы было понятнее, давайте разберем несколько примеров надписей на SMD сопротивлении. Множитель можно брать из таблицы на рисунке выше.

  • 480 — 48 надо умножить на 1, то есть это резистор на 48 Ом;
  • 313 — 31 надо умножить на 1000, получаем 31000 Ом или 31 кОм;
  • 5442 — 544 надо умножить на 100, итого 54400 Ом или 54,4 кОм;
  • 2115 — 211 с множителем 100 000, получаем 21 100 000 Ом или 21,1 МОм.

Но для маркировки низкоомных резисторов SMD — с сопротивлением менее 100 Ом — используют другую систему. Тут надо определиться с положением точки. Вместо точки ставят латинскую букву R. Пример есть на картинке ниже, разобраться несложно.

Маркировка низкоомных SMD резисторов

Если видите на корпусе резистора букву R, это значит, что номинал небольшой — не более 100 Ом. Иногда встречается вариант с буквой K. Этой буквой зашифровывают множитель 10³ или 1000. Этот тип обозначений создан по аналогии, то есть положение буквы обозначает наличие точки.

Из всех примеров разобрать стоит только K47, да еще, может быть 4K7. Остальные понять несложно. Итак, K47. Так как буква стоит перед цифрами, перед ними ставим запятую, а множитель известен — 1000. Так что получаем: 0,47 * 1000 Ом = 470 Ом. Второй пример: 4K7. Так как буква стоит между цифрами, ставим тут запятую, множитель все тот же — 1000. Получаем 4,7 * 1000 = 4700 Ом или 4,7 кОм.

Расшифровка кодов прецизионных резисторов СМД (повышенной точности)

Для резисторов поверхностного монтажа на печатных платах повышенной точности есть своя маркировка. Описана она в стандарте EIA-96. Применяется для изделий с возможными отклонениями по номиналу не более 1% (0,5%, 0,25%). На поверхности резистора стоят две цифры и одна буква (не R и не K), но значение у них другое:

две цифры обозначают код номинала (обратите внимание, не сам номинал, а его код);
буква — множитель.

Находится номинал в несколько шагов. Сначала по таблице находят код (на картинке ниже), по нему определяют номинал. По второй части таблицы находят множитель (выделен красным). Два найденных числа перемножают и получают номинал.

Таблица расшифровки кодов для SMD резисторов повышенной точности

Давайте разберем несколько примеров того, как определить номинал прецизионных резисторов SMD типа.

  • 01С. Код 01 обозначает 100 Ом, буква С — множитель 100. Итого получаем номинал: 100*100 = 10000 Ом или 10 кОм.
  • 30S. По таблице смотрим код 30. Он соответствует цифре 200. Буква S — множитель 0,01. Считаем номинал: 200 * 0,01 = 2 Ом.
  • 11D. Расшифровка кода 11 — 127, под буквой D зашифрован множитель 1000. Итого получаем 127*1000 = 127 000 Ом или 127 кОм.

В общем, принцип понятен. Ищем код, множитель, перемножаем. В общем, ничего особенно сложного. Простая математика. Если с устным счетом «не очень» помочь может калькулятор. Еще вариант — найти программу, которая расшифровывает коды резисторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector