Вес

Пятый способ. Женская формула с учетом возраста и роста

Преимущество: данный способ учитывает возрастные изменения представительниц прекрасного пола.

Недостатком является то, что метод подходит только для женщин. В нем никак не отражается их тип телосложения.

Норма веса у большинства женщин по возрасту постепенно увеличивается. Это связано с замедлением обменных процессов в их организме, и является естественным явлением.

Данная формула отвечает на вопрос, как определить правильную норму килограмм в женщине с учетом возраста:
50 + 0,75 (Рост – 150) + (Возраст – 20) / 4

Пример: женщине 42 года, а рост у нее 168 см. Находим идеальную массу тела:
50 + 0,75 (168 – 150) + (42 – 20) / 4 = 69 килограмм.

Теперь вы уже знаете, как правильно рассчитать избыточный вес. Вас можно поздравить, если ваша масса тела находится в рамках нормы, а если нет — необходимо заняться собой.

Но нельзя забывать, что мы все индивидуальны, и идеальное количество килограмм может отличаться от вычисленного — главное, чтобы человеку было комфортно.

Кроме того, цифры на весах часто не описывают состояние тела и самочувствие, соотношение жировой и мышечной ткани. А именно они дают красивые изгибы и подтянутость.

А какой вас способ расчета идеального веса понравился больше всего?

Автор статьи: Мирослава Федорук

Измерение

Вес можно измерять с помощью пружинных весов, которые могут служить и для косвенного измерения массы, если их соответствующим образом проградуировать; рычажные весы в такой градуировке не нуждаются, так как в этом случае сравниваются массы, на которые действует одинаковое ускорение свободного падения или сумма ускорений в неинерциальных системах отсчёта. При взвешивании с помощью технических пружинных весов вариациями ускорения свободного падения обычно пренебрегают, так как влияние этих вариаций обычно меньше практически необходимой точности взвешивания.

На результате измерений может в некоторой степени сказаться сила Архимеда, если при взвешивании с помощью рычажных весов сравниваются тела с различной плотностью.

Примечания

  1. Рудой Ю. Г. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 262. — 707 с. — 100 000 экз.
  2. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2005. — Т. I. Механика. — С. 373. — 560 с. — ISBN 5-9221-0225-7.
  3. Во многих иноязычных публикациях вес (см., например, начало немецкой версии статьи) синонимизируется с силой тяжести, что в российской педагогике считается ошибкой.
  4. The National Standard of Canada, CAN/CSA-Z234.1-89 Canadian Metric Practice Guide, January 1989: 5.7.3. Considerable confusion exists in the use of the term «weight». <…> In scientific and technical work, the term «weight» should be replaced by the term «mass» or «force», depending on the application.
  5. Ранее в технике широко использовалась единица силы килограмм-сила — одна из основных единиц системы МКГСС.
  6. ISO 80000-4:2006, Quantities and units — Part 4: Mechanics.
  7.  (англ.). Weights and Measures. NIST. Дата обращения 7 декабря 2016.
  8.  (англ.). Resolution of the 3rd CGPM (1901). BIPM. Дата обращения 1 ноября 2015.

Свойства

Вес P{\displaystyle \mathbf {P} } тела, покоящегося в инерциальной системе отсчёта, равен силе тяжести, действующей на тело, и пропорционален массе m{\displaystyle m} и ускорению свободного падения g{\displaystyle \mathbf {g} } в данной точке:

P=mg{\displaystyle \mathbf {P} =m\mathbf {g} }.

Широтное уменьшение силы тяжести mg

Ускорение свободного падения зависит от высоты над земной поверхностью и — ввиду несферичности Земли, а также ввиду её вращения — от географических координат точки измерения. В результате суточного вращения Земли существует широтное уменьшение веса: на экваторе вес примерно на 0,3 % меньше, чем на полюсах. Другим фактором, влияющим на значение g{\displaystyle \mathbf {g} } и, соответственно, вес тела, являются гравитационные аномалии, обусловленные особенностями строения земной поверхности и недр в окрестностях точки измерения. Если тело находится вблизи другой планеты, а не Земли, то ускорение свободного падения будет определяться массой и размерами этой планеты, наряду с расстоянием между её поверхностью и телом.

При движении системы «тело» — «опора или подвес» относительно инерциальной системы отсчёта с ускорением w{\displaystyle \mathbf {w} } вес перестаёт совпадать с силой тяжести:

P=m(g−w){\displaystyle \mathbf {P} =m(\mathbf {g} -\mathbf {w} )}.

Например, если ускорение (независимо от скорости) лифта направлено вверх, то вес находящегося в нём груза увеличивается, а если вниз, то уменьшается. Ускорение за счёт вращения Земли не входит в w{\displaystyle \mathbf {w} }, оно уже учтено в g{\displaystyle \mathbf {g} }. Состояние отсутствия веса (невесомость) наступает при удалении тела от притягивающего объекта, либо когда тело находится в свободном падении, то есть при g−w={\displaystyle \mathbf {g} -\mathbf {w} =0}.

Комментарий

Тело массой m{\displaystyle m}, вес которого анализируется, может стать субъектом приложения дополнительных сил, косвенно обусловленных присутствием гравитационного поля, в том числе силы Архимеда и трения. При этом воздействие изучаемого тела на опоры и подвесы будет опосредовано наличием указанных привходящих факторов.[прояснить]

В официальном определении, приведённом в преамбуле, отсутствует конкретизация, должны ли учитываться подобные факторы. Не оговорено также, обязательно ли роль опоры-подвеса должно играть упругое твёрдое тело и что если опор несколько. Кроме того, в публикациях встречаются и неэквивалентные дефиниции веса. Отсюда, несмотря на ясность природы фигурирующих сил, возникают терминологические неопределённости.[источник не указан 858 дней]

Так, при учёте только вклада силы тяжести покоящемуся на наклонной поверхности телу приписывается направленный по нормали к опоре вес mgcos⁡α{\displaystyle mg\cos \alpha }, где α{\displaystyle \alpha } — угол наклона. Но если учесть ещё и силу трения покоя (а она, по третьему закону Ньютона, приложена и к телу, и к опоре), то вектор веса станет равным mg{\displaystyle m\mathbf {g} }. Аналогично с силой Архимеда: в жидкости или газе с плотностью ρ{\displaystyle \rho } на тело действует подъёмная сила FA=−ρgV{\displaystyle \mathbf {F} _{A}=-\rho \mathbf {g} V} (где V{\displaystyle V} — объём тела), из-за которой, скажем, воздействие тела на неровное дно водоёма ослабляется. Трактуя эту ситуацию, можно либо заявить, что вес тела снижается на вес вытесненного объёма воды, либо считать, что вес по-прежнему составляет mg{\displaystyle m\mathbf {g} } и есть ещё подлежащая отдельному анализу архимедова сила.[источник не указан 858 дней]В целом, в литературе доминирует подход[нет в источнике], при котором вес тела в покое вблизи Земли всегда приравнивается mg{\displaystyle m\mathbf {g} }. Этот подход означает, что вес тела с точностью до знака равен векторной сумме всех сил (кроме силы тяжести), действующих на тело, включая силы Архимеда («жидкая опора») и трения, при учёте всех имеющихся опор-подвесов совместно.

Для многих задач описанные неопределённости несущественны, так как чаще всего рассматривается неподвижное тело на сухой горизонтальной поверхности.[источник не указан 858 дней]

Виды производственных затрат

Как правило, для проведения анализа используют не совокупные затраты предприятия, а отдельные группы затрат. Чаще всего в экономическом анализе используют следующие группы затрат:

Материальные затраты — стоимость приобретаемых на стороне материалов, полуфабрикатов и сырья, сюда также включают стоимость услуг по их транспортировке, таможенные пошлины;

Энергетические затраты стоимость затрат на электроэнергию;

Затраты на оплату труда — зарплата, компенсации, пособия основного производственного персонала предприятия;

Отчисления на социальные нужды;

Амортизация основных фондов — сумма отчислений на восстановление основных фондов;

Прочие затраты (например, аренда, платежи по кредиту).

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 18 человек(а). Количество просмотров этой статьи: 12 705.

Категории: Физика

English:Calculate Mass

Español:calcular la masa

Italiano:Calcolare la Massa

Deutsch:Masse berechnen

Português:Calcular Massa

中文:计算物体的质量

Français:calculer une masse

Nederlands:Massa berekenen

Bahasa Indonesia:Menghitung Massa

العربية:حساب الكتلة

한국어:질량 구하는 법

हिन्दी:द्रव्यमान की गणना करें (Calculate Mass)

日本語:質量を計算する

Печать

Примечания

  1. Окунь Л. Б. // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 50—52. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Матвеев А. Н. Механика и теория относительности. — М.: ОНИКС, 2003. — 432 с. — ISBN 5-329-00742-9 .
  3. . lenta.ru. Дата обращения 13 декабря 2018.
  4. Tomilin K. A.  (англ.). Proc. of the XXII Internat. Workshop on high energy physics and field theory (June 1999). Дата обращения 22 декабря 2016.
  5. Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7., § 9. Энергия и импульс.
  6. Наумов А. И. Физика атомного ядра и элементарных частиц. — М., Просвещение, 1984. — С. 6.
  7. Фок В. А. Теория пространства, времени и тяготения. — М.: Государственное издательство технико-теоретической литературы, 1955. — 504 с.
  8. Мёллер К. Теория относительности = The theory of relativity. Clarendon Press. Oxford. 1972.. — М.: Атомиздат, 1975. — 400 с.
  9. Широков Ю. М. Ядерная физика. — М., Наука,1980. — С. 37.
  10. Наумов А. И. Физика атомного ядра и элементарных частиц. — М., Просвещение, 1984. — С. 25.
  11. В этом абзаце для простоты используется рассмотренная выше система единиц с = 1.
  12. Герштейн С. С., Захаров В. И. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 384—388. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  13. , с. 119.
  14. , с. 123.
  15. Копылов Г. И. Всего лишь кинематика. — М.: Атомиздат, 1968. — 176 с.
  16. , с. 136.
  17. , с. 150.
  18. , с. 161.
  19. Киппенхан Р. 100 миллиардов солнц. Рождение, жизнь и смерть звезд. — М.: Мир, 1990. — С. 281—284 — ISBN 5-03-001195-1.
  20. , Глава I.
  21. Спасский Б. И. История физики. М., «Высшая школа», 1977, том I, с. 135—137.
  22. Ньютон И. Математические начала натуральной философии, том I, определение 1.
  23. Тюлина И. А.  Об основах ньютоновой механики (к трёхсотлетию «Начал» Ньютона) // История и методология естественных наук. — М.: Изд-во Моск. ун-та, 1989. — Вып. 36. — С. 184—196..
  24. Мах Э. Механика. Историко-критический очерк её развития. Ижевск: НИЦ РХД, 2000. 456 с. ISBN 5-89806-023-5.

Формула зависимости массы от объема и плотности

Для того, чтобы найти плотность жидкости или твердого вещества, существует базовая формула: плотность равна массе, поделенной на объем. 

Записывается это так:

ρ = m / V

И из нее можно вывести еще две формулы.

Формулу для объема тела:

V = m / ρ

А также формулу для расчета массы:

m = V * ρ

Как видите, запомнить последнюю очень легко: это единственная формула, где две единицы нужно умножить.

Для запоминания этой зависимости можно использовать рисунок в виде «пирамидки», разделенной на три секции, в вершине которой находится масса, а в нижних углах – плотность и объем.

Несколько иначе обстоят дела с газами. Рассчитать их вес гораздо сложнее, так как у газов нет постоянной плотности: они рассеиваются и занимают весь доступный им объем. 

Для этого пригодится понятие молярной массы, которую можно найти, сложив массу всех атомов в формуле вещества при помощи данных из периодической таблицы.

Вторая единица, которая нам понадобится – количество вещества в молях. Его можно вычислить по уравнению реакции. Подробнее об этом можно узнать в рамках курса химии. 

Другой способ нахождения мольного количества – через объем газа, который нужно поделить на 22,4 литра. Последнее число – это объемная постоянная, которую стоит запомнить. 

В итоге, зная две предыдущие величины, мы можем определить массу газа:

m = n * M,

где M – это молярная масса, а n – количество вещества.

Результат получится в граммах, поэтому для решения физических задач важно не забыть перевести его в килограммы, поделив на 1000. Числа в этой формуле часто могут оказываться достаточно сложными, поэтому для вычислений может понадобиться калькулятор

Еще один нестандартный случай, с которым можно столкнуться – необходимость найти плотность раствора. Для этого существует формула средней плотности, построенная аналогично формулам других средних величин. 

Для двух веществ посчитать ее можно так:

(m1 + m2) / V1 + V2.

Также из этой формулы можно вывести несколько других в зависимости от того, какие из величин известны по условию задачи.

Этимология и история понятия

Слово масса (лат. massa, от др.-греч. μαζα) первоначально в античные времена обозначало кусок теста. Позднее смысл слова расширился, и оно стало обозначать цельный, необработанный кусок произвольного вещества; в этом смысле слово используется, например, у Овидия и Плиния.

Масса как научный термин была введена Ньютоном как мера количества вещества, до этого естествоиспытатели оперировали понятием веса. В труде «Математические начала натуральной философии» (1687) Ньютон сначала определил «количество материи» в физическом теле как произведение его плотности на объём. Далее он указал, что в том же смысле будет использовать термин масса. Наконец, Ньютон ввёл массу в законы физики: сначала во второй закон Ньютона (через количество движения), а затем — в закон тяготения, откуда сразу следует, что вес пропорционален массе. Ньютон явно указал на эту пропорциональность и даже проверил её на опыте со всей возможной в те годы точностью: «Определяется масса по весу тела, ибо она пропорциональна весу, что мной найдено опытами над маятниками, произведенными точнейшим образом» (эти опыты Ньютон подробно описал в III томе своих «Начал»).

Фактически Ньютон использует только два понимания массы: как меры инерции и источника тяготения. Толкование её как меры «количества материи» — не более чем наглядная иллюстрация, оно сохранялось в XVII—XIX веке, но затем подверглось критике как нефизическое и бессодержательное. В настоящее время понятие «количество вещества» применяется, но имеет совершенно другой смысл.

Долгое время одним из главных законов природы считался закон сохранения массы. Однако в XX веке выяснилось, что этот закон является ограниченным вариантом закона сохранения энергии и во многих ситуациях не соблюдается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector