Решение типовых задач по сопромату

Модуль Юнга.

В частном случае малых деформаций стержней
имеется более детальная формула, уточняющая общий вид ( 1
) закона Гука.

Именно, если стержень длиной и площадью поперечного сечения растянуть или сжать
на величину , то для силы упругости справедлива формула:

Здесь — модуль Юнга
материала стержня. Этот коэффициент уже не зависит от геометрических размеров стержня. Модули Юнга различных веществ приведены в справочных таблицах.

Многие ли из нас задумывались, каким удивительным образом ведут себя предметы при воздействии на них?

Например, почему ткань, если мы растягиваем ее в разные стороны, может долго тянуться, а в один момент вдруг порваться? И почему тот же самый эксперимент куда сложнее провести с карандашом? От чего зависит сопротивление материала? Каким образом можно определить, до какой степени он поддается деформации или растяжению?

Все эти и многие другие вопросы более 300 лет назад задавал себе английский исследователь И нашел ответы, ныне объединенные под общим названием «Закон Гука».

Согласно его исследованиям, каждый материал имеет так называемый коэффициент упругости
. Это свойство, позволяющее материалу растягиваться в определенных пределах. Коэффициент упругости — величина постоянная. Это значит, что каждый материал может выдержать лишь определенный уровень сопротивления, после чего он достигает уровня необратимой деформации.

В целом, Закон Гука можно выразить формулой:

где F — сила упругости, k — уже упомянутый коэффициент упругости, а /x/ — изменение длины материала. Что подразумевается под изменением этого показателя? Под воздействием силы некий изучаемый предмет, будь это струна, резина или любой другой, изменяются, вытягиваясь или сжимаясь. Изменением длины в данном случае считается разница между изначальной и конечной длиной изучаемого предмета. То есть то, на сколько вытянулась/сжалась пружина (резина, струна и т.д.)

Отсюда, зная длину и постоянный коэффициент упругости для данного материала, можно найти силу, с которой материал натягивается, или силу упругости,
как еще нередко называют Закон Гука.

Существуют также особые случаи, при которых данный закон в своей стандартной форме использован быть не может. Речь идет об измерении силы деформации в условиях сдвига, то есть в ситуациях, когда деформацию производит некая сила, воздействующая на материал под углом. Закон Гука при сдвиге может быть выражен таким образом:

где τ — искомая сила, G- постоянный коэффициент, известный как модуль упругости при сдвиге, y — угол сдвига, та величина, на которую изменился угол наклона предмета.

Что такое растяжение-сжатие

Прежде всего нужно сказать, что растяжение-сжатие — это такой вид деформации (относительного изменения размеров), при котором одно плоское сечение относительно другого удаляется параллельно исходному положению.

Пример деформации растяжения-сжатия. Схема приложения

Все это звучит сложно, но посмотрите видео и Вы все поймете!

Подход в решении задач на растяжение-сжатие

Видео урок — Как отличить растяжение от сжатия. Приводится объяснение основного метода расчета задач по сопротивлению материалов — метод сечений

В первом видео уроке объясняется сам процес возникновения деформации растяжения-сжатия. Как отличить растяжение от сжатия. Приводится объяснение основного метода расчета задач по сопротивлению материалов — метод сечений.

Здесь рассмотрены задачи для стержня, имеющего сплошное поперечное сечение. На такой стержень может действовать как одна сила, так и несколько.

Растяжение-сжатие в стержневых конструкциях

видео урок Растяжение-сжатие в стержневых конструкциях

Во втором видео уроке приводится решение задачи на растяжение-сжатие для системы стержневых конструкций. Приведены методика и план решения задачи по сопротивлению материалов на тему растяжение-сжатие.

Учет собственного веса в задачах сопротивления материалов на растяжение-сжатие

видео урок — Учет собственного веса в задачах сопротивления материалов на растяжение-сжатие

Третья задача на растяжение-сжатие стержней с учетом собственного веса. Приведен пример решения задачи и доступно рассказывается как можно учесть собственный вес конструкции при расчете на растяжение-сжатие.

Растяжение-сжатие с учетом собственного веса в стержнях с двумя участками

Задача на растяжение сжатие, более сложный случай. В этой задаче стержень состоит из нескольких участков. Здесь необходимо учитывать собственный вес — для стержня, испытывающего деформацию растяжения или сжатия, который состоит из нескольких участков. Здесь же приводится методика построения эпюр внутренних усилий при этих видах деформации.

Удлинение стержня при деформации растяжения-сжатия

видео урок — Удлинение стержня при деформации растяжения-сжатия

Приведен пример расчета на растяжение-сжатие когда нужно определить удлинение стержня. Удлинение (при растяжении) или укорочение (при сжатии) — это изменение размеров стержня вдоль оси приложения продольной нагрузки. Об этом в пятом видео уроке.

Определение удлинения стержня с учетом собственного веса при растяжении-сжатии

Определение изменения длины стержня с учетом собственного веса. Особенности формулы для определения удлинения (изменения длины) при растяжении-сжатии с учетом собственного веса.

Итак на этой странице приведены видеоуроки на основные темы в растяжении-сжатии. Планируется запись еще темы в которой будут рассматриваться статически неопределимые задачи на растяжение-сжатие.

Конечно это не все задачи, которые может понадобиться решить реальному инженеру, как инженеру-механику, так и инженеру-строителю. Встречаются разные случаи, когда нужно применять сообразительность.

Неприятности с коэффициентом упругости

Физика наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Определение и общие сведения о деформации сдвига

Основным признаком, характеризующим деформацию сдвига, является сохранение постоянства объёма. Не зависимо от того, в каком направлении действуют силовые факторы этот параметр остаётся неизменным.

Примеры проявления деформации сдвига можно обнаружить при проведении различного рода работ. К таким случаям относятся:

  • при распиловке бруса;
  • отрезание или рубка металла;
  • в результате нарушения целостности крепления металлических или деревянных деталей, соединённых метизами;
  • балки в местах крепления опор;
  • места скрепления мостовых пролётов;
  • крепёж на перемычках соединения железнодорожных рельс;
  • разрезания листа бумаги ножницами.

При определённых условиях наблюдается чистый сдвиг. Он определяется как сдвиг, при котором на все четыре грани (например, прямоугольной детали) оказывают воздействие только напряжения, направленные по касательной к поверхности. В этом случае произойдёт плавный сдвиг всех слоёв детали от верхних к нижним слоям. Тогда внешняя сила изменяет форму детали, а объём сохраняется.

Для оценки величины сдвига и надёжности конструкции используют следующие параметры:

  • величина, направление и точка приложения воздействующей силы;
  • модуль сдвига;
  • угол изменения внешних граней изделия;
  • тангенциальное напряжение;
  • модуль кручения (зависит от физико-механических характеристик материала);

Расчёт и практическое измерение этих параметров необходимы для оценки устойчивости и целостности конструкции. Формула, позволяющая вычислить допустимые изменения, учитывает все воздействия на конкретные слои детали и всю конструкции в целом.

В случае воздействия деформации величина угла считается пропорциональной внешней силе. Увеличение степени воздействия может превратить деформацию сдвига в срез. Это приведёт к разрушению не только элементов крепления (болтов, шпилек, заклёпок), но и всей детали.

Для наглядности изменения формы детали при деформации сдвига динамика процесса обозначается с помощью величины угла смещения и векторов возникающих напряжений. Действующая сила направлена в сторону смещения слоёв рассматриваемой детали.

В современных условиях угол сдвига измеряется различными техническими приборами. Основным прибором для измерения параметров смещения является тензомер. Эти приборы работают на различных физических принципах:

  • оптические (в том числе лазерные);
  • акустические;
  • рентгеновские; электрические;
  • пневматические.

В этих приборах относительная деформация сдвига обрабатывается на современных вычислительных средствах с применением соответствующего программного обеспечения. Каждый метод обладает своими достоинствами и недостатками. Их применение зависит от поставленной задачи, технической и финансовой возможности.

Закон Гука.

Деформация называется малой
, если изменение размеров тела много меньше его первоначальных размеров. При малых деформациях зависимость силы упругости от величины деформации оказывается линейной.

Закон Гука

. Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину , сила упругости даётся формулой:

(1)

где — коэффициент жёсткости пружины.

Коэффициент жёсткости зависит не только от материала пружины, но также от её формы и размеров.

Из формулы (1)
следует, что график зависимости силы упругости от (малой) деформации является прямой линией (рис. 1
):

Рис. 1. Закон Гука

Коэффициент жёсткости — о угловой коэффициент в уравнении прямой . Поэтому справедливо равенство:

где — угол наклона данной прямой к оси абсцисс. Это равенство удобно использовать при экспериментальном нахождении величины .

Подчеркнём ещё раз, что закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела. Когда деформации перестают быть малыми, эта зависимость перестаёт быть линейной и приобретает более сложный вид. Соответственно, прямая линия на рис. 1
— это лишь небольшой начальный участок криволинейного графика, описывающего зависимость от при всех значениях деформации .

Модуль Юнга

 Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин:

  • материала (что нас вполне устраивает),
  • длины L (что указывает на его зависимость от ),
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом отделить из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала. Что нам известно:

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная,
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

,

причем Е новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

.

Следует признать, что эта величина более содержательна, чем  , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже ввели в игру S, то введем понятие нормального напряжения, которое записывается таким образом:

.

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения. Измеряется нормальное сечение в Н/м2

Измеряется нормальное сечение в Н/м2.

Тогда, закон можно записать в следующем виде:

,

подставим выражение для k:

,

перенесем S в левую часть, в знаменатель:

,

заменим величины:

.

Таким образом, мы получили формулу, которая отражает связь между нормальным напряжением и относительным удлинением.

Видеоурок по физике Силы упругости. Закон Гука

Закон Гука и упругие деформации

https://youtube.com/watch?v=b7MOGDQn500

Техническая механика



Сдвигом называют такой вид деформации, при которой в любом поперечном сечении бруса возникает только поперечная сила. Деформацию сдвига можно наблюдать, например, при резке ножницами металлических полос или прутков, при пробивании отверстия в заготовках на штампе (рис. 1).

Рассмотрим брус площадью поперечного сечения А, перпендикулярно оси которого приложены две равные и противоположно направленные силы F; линии действия этих сил параллельны и находятся на относительно небольшом расстоянии друг от друга. Для определения поперечной силы Q применим метод сечений (рис. 2). Во всех точках поперечного сечения действуют распределенные силы, равнодействующую которых определим из условия равновесия оставленной части бруса:

  • Σ Y = 0  »  F – Q = 0,
  • откуда поперечная сила Q может быть определена, как:
  • Q = F.

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении бруса при сдвиге. Очевидно, что при сдвиге в поперечном сечении возникают только касательные напряжения τ.

  1. Предполагаем, что эти касательные напряжения равномерно распределены по сечению, и, следовательно, могут быть вычислены по формуле:
  2. τ = Q / А.
  3. На основании полученной формулы можно сделать вывод, что форма сечения на величину напряжения при деформации сдвига не влияет.
  4. ***

Расчеты на прочность при сдвиге

Условие прочности детали конструкции заключается в том, что наибольшее напряжение, возникающее в ней (рабочее напряжение), не должно превышать допускаемое. Расчетная формула при сдвиге:

τ = Q / А ≤

читается следующим образом: касательное напряжение при сдвиге не должно превышать допускаемое. (при обозначении предельно допустимых напряжений применяют квадратные скобки: или ) По этой расчетной формуле проводят проектный и проверочный расчеты и определяют допускаемую нагрузку.

Деформация сдвига, доведенная до разрушения материала, называется срезом (применительно к металлам) или скалыванием (применительно к неметаллам). Допускаемое напряжение на срез выбирают для пластичных материалов в зависимости от предела текучести.

В машиностроении для штифтов, болтов, шпонок и других деталей, работающих на срез принимают = (0,25….0,35) σт, где σт – предел текучести материала изделия.

При расчетах на срез в случае, если соединение осуществляется несколькими одинаковыми деталями (болтами, заклепками и т. д.), полагают, что все они нагружены одинаково. Расчеты соединений на срез обычно сопровождают проверкой прочности этих соединений на смятие.

***



Для установления параметров, характеризующих деформацию при сдвиге, рассмотрим элемент бруса в виде параллелепипеда abcd, на грани которого действуют только касательные напряжения τ, а противоположную грань параллелепипеда представим жестко защемленной (рис. 3).

Деформация сдвига в указанном элементе заключается в перекашивании прямых углов параллелепипеда за счет поступательного перемещения грани bc по отношению к сечению, принятому за неподвижное.

Деформация сдвига характеризуется углом γ (гамма) и называется углом сдвига, или относительным сдвигом. Величина bb1, на которую смещается подвижная грань относительно неподвижной, называется абсолютным сдвигом.

Относительный сдвиг γ выражается в радианах.

Напряжения и деформации при сдвиге связаны между собой зависимостью, которая называется закон Гука при сдвиге. Закон Гука при сдвиге справедлив лишь в определенных пределах нагрузок и формулируется так: касательное напряжение прямо пропорционально относительному сдвигу.

Математически закон Гука для деформации сдвига можно записать в виде равенства:

τ = G γ.

Коэффициент пропорциональности G характеризует жесткость материала, т. е. способность сопротивляться упругим деформациям при сдвиге, и называется модулем сдвига или модулем упругости второго рода.

Модуль упругости выражается в паскалях; для различных материалов его величина определена экспериментально и ее можно найти в специальных справочниках. При проведении ответственных расчетов на срез величина модуля упругости для каждого соединения определяется опытным путем, непосредственно перед расчетом, либо берется из справочника с применением увеличенного запаса прочности.

  • Следует отметить, что между тремя упругими постоянными (модулями упругости) E, G и ν существует следующая зависимость:
  • G = E / .
  • Принимая для сталей ν ≈ 0,25, получаем: Gст ≈ 0,4 Ест .
  • ***
  • Материалы раздела «Сопротивление материалов»:



Основные понятия

Под кручением понимают вид деформации, свойственный для условий приложения к телу силы в поперечной плоскости. В результате этого в поперечном разрезе формируется крутящий момент. Деформациям кручения подвергаются валы и пружины.

Валом называют функционирующую на кручение вращающуюся деталь в виде стержня.

Под торсионом понимают функционирующий на кручение стержень, применяемый в качестве упругого элемента.

Для круглых валов, наиболее обширно применяемых в технике, разработана теория кручения. Она основана на трех положениях:

  • После деформации сохраняется плоское поперечное сечение детали.
  • При деформации радиусы, проходящие поперек детали, не искривляются и проворачиваются на равный угол.
  • При деформации продольные волокна сохраняют размеры, следовательно, разделяющие поперечные сечения расстояния неизменны.

Деформациями при кручении считают взаимный проворот сечений. Они формируются вследствие воздействия на стержень пар сил с перпендикулярными к его продольной оси плоскостями действия.

Угол закручивания стержня цилиндрической конфигурации в границах упругих деформаций определяется уравнением закона Гука для кручения, представляющего отношение произведения момента и длины вала к произведению геометрического полярного инерционного момента и модуля сдвига.

Относительный угол закручивания вычисляют как частное угла закручивания и длины стержня.

Под вращающими либо скручивающими моментами понимают показатели пар сил, воздействующих на вал. Их подразделяют на внешние, называемые вращающими и скручивающими, и внутренние (крутящие). Под влиянием перпендикулярных продольной оси бруса внешних крутящих моментов формируются внутренние. Они передаются на деталь в точках установки шкивов ременных передач, зубчатых колес и т. д.

Условия прочности и жесткости применяют для решения следующих задач:

  • Выполнения проверочного расчета данных условий для конкретных значений крутящего момента и валов определенного размера и материала.
  • Выполнения проектировочного расчета для вычисления диаметров и нахождения большего из них.
  • Определения грузоподъемности вала путем вычисления крутящего момента из обоих условий и нахождения меньшего из них.

Под эпюрой крутящих моментов понимают график, отображающий закон их изменения по длине либо сечению детали.

При разделении детали по длине на три участка в соответствии с методом сечений получится, что для первого (правого) фрагмента наблюдается линейная зависимость крутящего момента от координаты сечения ввиду влияния равномерно распределенной нагрузки, для второго и третьего участков данная зависимость отсутствует. При этом в точках приложения внешних сосредоточенных усилий наблюдаются скачки, соответствующие их величине.

В сечении наблюдается линейное изменение, определяемое законом касательных напряжений, в прямой зависимости от расстояния от центра.

Полярный инерционный момент сечения представляет собой геометрическую характеристику жесткости при кручении для круглого вала. Полярный момент сопротивления сечения является аналогичным параметром для его прочности.

Следует отметить, что большинство приведенных выше понятий описывается с применением формул.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр зависит от трех величин:

  • материала;
  • длины L;
  • площади S.

Таким образом, если удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то получим коэффициент, полностью зависящий от материала.

Известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Коэффициент упругости можно записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

Эта величина более содержательна, чем

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Измеряется нормальное сечение в Н/м2.

Тогда, закон Гука можно записать в следующем виде:

подставим выражение для k:

перенесем S в левую часть, в знаменатель:

заменим величины:

Таким образом, мы получили формулу, которая отражает связь между нормальным напряжением и относительным удлинением.

Видеоурок по физике «Силы упругости. Закон Гука»:

Про закон Гука и упругие деформации:

Сформулируем закон Гука при растяжении и сжатии: при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Напряжение при сдвиге

Воздействие внешней силы на грань приводит к возникновению в изделии изменения формы. Все напряжения делятся на две категории: нормальные и касательные. Нормальными считаются внутренние напряжения, возникающие в различных слоях изделия, подверженного деформации.

Напряжения и деформации при сдвиге описываются с применением аналитических выражений и графических изображений. Общее состояние описывается пространственным (трёхкоординатным) напряжением. Если в конкретном случае можно выявить сечения, в которых оба вида напряжений равны нулю, можно перейти к более простым моделям описания этого процесса. Ими являются двухкоординатное (плоское) напряжённое состояние или линейное. Две последних модели являются частными случаями трёхкоординатного напряжённого состояния.

Касательные напряжения являются мерой скольжения одного поперечного слоя относительно другого. В изменениях на поверхности каждого слоя возникают только касательные напряжения. Для оценки полной картины деформации используют следующие теоретические положения:

  • закон парности касательных напряжений;
  • вычисление экстремальных нормальных напряжений;
  • определение всех тангенциальных напряжений.

Оценка их всех при деформации смещения позволят оценить прочность конструкции.

Закон Гука в математической форме

Формулировка Гука дает возможность записать его в следующем виде:

где

Также отметим, что Закон Гука при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Формула, выражающая закон Гука, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87,5 сантиметров. Требуется узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector