Амфотерные металлы
Содержание:
- Что представляют собой амфотерные металлы?
- Где используются амфотерные металлы?
- Основания амфотерных металлов
- Основания амфотерных металлов
- Взаимодействие оксидов с кислотами
- Получение
- Основания. Амфотерные гидроксиды
- Взаимодействие с простыми веществами
- Применение оксидов
- Получение
- Какие оксиды реагируют с водой?
- Свойства амфотерных металлов
- Страницы
- Примеры амфотерных гидроксидов
- Примеры амфотерных гидроксидов
- Получение
Что представляют собой амфотерные металлы?
Список амфотерных металлов включает в себя множество наименований. Некоторые из них можно с уверенность назвать амфотерными, некоторые – предположительно, иные – условно. Если рассматривать вопрос масштабно, то для краткости можно назвать просто порядковые номера выше указанных металлов. Эти номера: 4,13, с 22 до 32, с 40 до 51, с 72 до 84, со 104 до 109. Но есть металлы, которые вправе назваться основными. К ним относятся хром, железо, алюминий и цинк. Дополняют основную группу стронций и бериллий. Самым распространенным из всех перечисленных на данный момент является алюминий. Именно его сплавы уже много столетий используются в самых разнообразных сферах и областях применения. Металл имеет отличную антикоррозийную стойкость, легко поддается литью и различным типам механической обработки. Кроме того, популярность алюминия дополняется такими преимуществами, как высокая теплопроводность и хорошая электропроводность.
Алюминий — амфотерный металл, для которого свойственно проявлять химическую активность. Стойкость данного металла определяется прочной оксидной пленкой и, в обычных условиях окружающей среды, при реакциях химического направления, алюминий выступает восстановительным элементом. Такое амфотерное вещество способно взаимодействовать с кислородом, в случае раздробления металла на мелкие частицы. Для такого взаимодействия необходимо влияние высокого температурного режима. Химическая реакция при соприкосновении с кислородной массой сопровождается огромным выделением тепловой энергии. При температуре свыше 200 градусов взаимодействие реакций при соединении с таким веществом, как сера, образовывает сульфид алюминия. Амфотерный алюминий не способен напрямую взаимодействовать с водородом, а при смешивании этого металла с другими металлическими компонентами возникают различные сплавы, содержащие соединения интерметаллического типа.
Железо — амфотерный металл, который является одной из побочных подгрупп группы 4 периода в системе элементов химического типа. Данный элемент выделяется как самое распространенное составляющее группы металлических веществ, в составе компонентов земной коры. Железо классифицируется как простое вещество, среди отличительных свойств которого можно выделить его ковкость, серебристо-белую цветовую гамму. Такой металл обладает способностью провоцировать возникновение повышенной химической реакции и быстро переходит в стадию корродирования при воздействии высокой температуры. Помещенное в чистый кислород железо полностью перегорает, а доведенное до мелкодисперсного состояния может самовоспламеняться на простом воздухе. Находясь на воздухе металлическое вещество быстро окисляется вследствие чрезмерной влажности, то есть, ржавеет. При горении в кислородной массе образуется своеобразная окалина, которая называется оксидом железа.
Где используются амфотерные металлы?
Сферы применения:
- Изготовление деталей для сейсмических и скоростных датчиков, часовых механизмов, крутящего момента.
- Производство деталей для оборудования, которые будут взаимодействовать с агрессивными факторами.
- Армирование труб высокого давления.
- Кораблестроение, самолетостроение.
- Производство бытовых приборов, инструментов. К ним относятся столовые приборы, рулетки, бритвенные лезвия, посуда для кухни.
- Сборка видеозаписывающего оборудования.
С каждым годом появляется все больше химических соединений. Благодаря этому открываются новые амфотерные металлы. Их называют материалами будущего, но популярность их растет медленно. Связано это с высокой стоимостью, небольшими размерами готовых изделий.
https://youtube.com/watch?v=BZIhw3pQFQs
Основания амфотерных металлов
В нормальных условиях это вещества не растворяются в воде и их можно спокойно отнести к слабым электролитам. Такие вещества получают после проведения реакции солей металла и щелочи. Эти реакции довольно опасны для тех, кто их производит и поэтому, например, для получения гидроксида цинка в емкость с хлоридом цинка медленно и аккуратно, по капле надо вводить едкий натр.
Вместе тем, амфотерные — взаимодействуют с кислотами как основания. То есть при выполнении реакции между соляной кислотой и гидроксидом цинка, появится хлорид цинка. А при взаимодействии с основаниями, они ведут себя как кислоты.
Это занятие мы посвятим изучению амфотерных оксидов и гидроксидов. На нем мы поговорим о веществах, имеющих амфотерные (двойственные) свойства, и особенностях химических реакций, которые протекают с ними. Но сначала повторим, с чем реагируют кислотные и основные оксиды. После рассмотрим примеры амфотерных оксидов и гидроксидов.
Тема: Введение
Урок: Амфотерные оксиды и гидроксиды
Основания амфотерных металлов
В нормальных условиях это вещества не растворяются в воде и их можно спокойно отнести к слабым электролитам. Такие вещества получают после проведения реакции солей металла и щелочи. Эти реакции довольно опасны для тех, кто их производит и поэтому, например, для получения гидроксида цинка в емкость с хлоридом цинка медленно и аккуратно, по капле надо вводить едкий натр.
Вместе тем, амфотерные — взаимодействуют с кислотами как основания. То есть при выполнении реакции между соляной кислотой и гидроксидом цинка, появится хлорид цинка. А при взаимодействии с основаниями, они ведут себя как кислоты.
Рейтинг: /5 —
голосов
Взаимодействие оксидов с кислотами
С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:
FeO + H2SO4 = FeSO4 + H2O
Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.
Когда все-таки кислотный оксид реагирует с кислотой?
Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:
1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:
SiO2 + 6HF = H2[SiF6] + 2H2O,
а в случае недостатка HF:
SiO2 + 4HF = SiF4 + 2H2O
2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:
S+4O2 + 2H2S-2 = 3S + 2H2O
3) Оксид фосфора (III) P2O3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:
P2O3 | + | 2H2SO4 | + | H2O | =to=> | 2SO2 | + | 2H3PO4 |
(конц.) |
3P2O3 | + | 4HNO3 | + | 7H2O | =to=> | 4NO↑ | + | 6H3PO4 |
(разб.) |
P2O3 | + | 4HNO3 | + | H2O | =to=> | 2H3PO4 | + | 4NO2↑ |
(конц.) |
4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.
2HNO3 | + | SO2 | =to=> | H2SO4 | + | 2NO2↑ |
(конц.) |
2HNO3 | + | 3SO2 | + | 2H2O | =to=> | 3H2SO4 | + | 2NO↑ |
(разб.) |
Получение
Общим способом получения амфотерных гидроксидов является осаждение разбавленной щёлочью из растворов солей соответствующего амфотерного элемента, например:
- ZnSO4 + 2NaOH ⟶ Zn(OH)2↓ + Na2SO4{\displaystyle {\mathsf {ZnSO_{4}\ +\ 2NaOH\ \longrightarrow \ Zn(OH)_{2}\downarrow \ +\ Na_{2}SO_{4}}}}
В избытке щёлочи начнётся растворение осадка гидроксида:
-
- Zn(OH)2+2NaOH→Na2Zn(OH)4{\displaystyle {\mathsf {Zn(OH)_{2}+2NaOH\rightarrow Na_{2}}}}
В ряде случаев при осаждении образуется не гидроксид, а гидрат оксида соответствующего элемента (например, гидраты оксидов железа(III), хрома(III), олова(II) и др.). Химические свойства таких гидратов по большей части аналогичны свойствам соответствующих гидроксидов.
Основания. Амфотерные гидроксиды
Основания, их классификация, свойства, получение
Основания — это сложные вещества, при диссоциации которых образуются ионы металла или аммония и гидроксид-ионы ОН-. NaOH <=> Na+ + ОН- |
Основания — это вещества, принимающие протоны. NH3 + H+ = NH4+ |
1. Какие из перечисленных веществ относятся к основаниям: LiOH, CH3COOH, Fe(OH)2, CH3NH2, H2SO3, Mg(OH)2?
Классификация оснований
Признаки классификации |
Группы оснований |
Примеры |
1. Природа веществ |
Неорганические |
NaOH гидроксид натрия |
Органические |
CH3NH2 метиламин |
|
2. Состав веществ (наличие кислорода) |
Бескислородные |
NH3 -аммиак |
Кислородсодержащие |
Cu(OH)2 -гидроксид меди (II) |
|
3. Кислотность оснований (по числу гидроксильных групп) |
Однокислотные |
KOH — гидроксид калия |
Двухкислотные |
Ca(OH)2 — гидроксид кальция |
|
4. Степень электролитической диссоциации |
Слабые |
Fe(OH)2 — гидроксид железа (II) |
Сильные (щелочи) |
NaOH гидроксид натрия |
|
5. Растворимость в воде |
Растворимые (щелочи) |
NaOH гидроксид натрия |
Нерастворимые |
Cu(OH)2 -гидроксид меди (II) |
|
6. Летучесть |
Летучие |
NH3 -аммиак |
Нелетучие |
Cu(OH)2 -гидроксид меди (II) |
|
7. Устойчивость к нагреванию |
Устойчивые |
KOH — гидроксид калия |
Неустойчивые |
Cu(OH)2 -гидроксид меди (II) |
2. Охарактеризуйте гидроксид кальция Сa(OH)2 по всем признакам классификации.
ПОЛУЧЕНИЕ
Получение растворимых оснований (щелочей) |
Получение нерастворимых оснований |
1. Реакцией обмена (если один из продуктов выпадает в осадок): Na2SO4 + Вa(OH)2 = ВaSO4↓ + 2NaOH |
Нерастворимые основания получают реакцией обмена между раствором соли и раствором щелочи: CuCl2 + 2NaOH = Cu(OH)2↓+ 2NaCl |
2. Растворимые основания (щелочи) можно получить взаимодействием щелочного и щелочно-земельного металла или их оксидов с водой:2Na + 2H2O = 2NaOH + H2 CaO + H2O = Ca(OH)2 |
|
3. Электролизом водного раствора соли хлоридов щелочных металлов (в качестве побочного продукта образуется хлор): 2NaCl + 2H2O = 2NaOH + H2 + Cl2 (действием электрического тока) |
3. Даны вещества: Fe(OH)2, Ca(OH)2, LiOH, Al(OH)3. Какие вещества образуются при взаимодействии металлов с водой, а какие — действием щелочи на раствор соли?
Химические свойства оснований
1. Диссоциация оснований с образованием гидроксид-ионов ОН-:
NaOH <=> Na+ + OH-LiOH <=> Li+ + OH-
2. Взаимодействие с кислотами с образованием соли (реакция нейтрализации):
Mg(OH)2 + 2HNO3 = Mg(NO3)2 + 2H2OMg(OH)2 + 2H+ = Mg2+ + 2H2O
3. Взаимодействие щелочей с кислотными оксидами с образованием соли и воды:
2NaOH + SiO2 = Na2SiO3 + H2O (при нагревании)Ca(OH)2 + CO2 = CaCO3↓ + H2O
4. Взаимодействие раствора щелочи с растворами различных солей с образованием нерастворимого основания:
CuSO4 + 2NaOH = Cu(OH)2 ↓+ Na2SO4Cu2+ + 2OH- = Cu(OH)2 ↓
5. Разложение нерастворимых оснований при нагревании с образованием оксида металла и воды:
Cu(OH)2 = CuO + H2O (при нагревании)
6. Взаимодействие растворов щелочи с некоторыми неметаллами:
2NaOH + Cl2 = NaCl + NaClO + H2O (на холоде) 6NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (при нагревании)2NaOH + Si = Na2SiO3 + 2H2
-
Взаимодействие щелочи с некоторыми металлами (образующие амфотерные соединения).
??? 4. Даны вещества: CaO, SO2, Ba(OH)2, HClO4, KCl, CuCl2.
а) Какие из перечисленных веществ реагируют с гидроксидом натрия?
б) Напишите уравнения возможных реакций.
в) Какая из приведенных реакций относится к реакции нейтрализации?
5. Какие вещества разлагаются при нагревании: Fe(OH)2, NaOH, Al(OH)3, Fe(OH)3, Ba(OH)2? Напишите уравнения возможных реакций.
6.
В трех пробирках даны растворы хлорида натрия, соляной кислоты,
гидроксида натрия. Как можно распознать эти растворы химическим
способом?
7.
Какая масса щелочи NaOH должна находиться в растворе для реакции с 16 г
сульфата меди (II), чтобы получить осадок гидроксида меди(II)?
Амфотерные гидроксиды
Амфотерные гидроксиды — гидроксиды, которые при диссоциации образуют одновременно и катионы Н+, и гидроксид-ионы ОН-.Амфотерные гидроксиды соответствуют амфотерным оксидам. Например, Al(OH)3, Zn(OH)2, Cr(OH)3, Be(OH)2 и другие.
1) Взаимодействие амфотерных гидроксидов с кислотами:
Al(OH)3 + 3HCl = AlCl3 + 3H2O
Al(OH)3 + 3H+ = Al3+ + 3H2O
2) Взаимодействие амфотерных гидроксидов со щелочью:
Al(OН)3 + NaOH = Na[Al(OH)4] (тетрагидроксоалюминат натрия)Zn(OН)2 + 2NaOH = Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)
3) Проявляют свойства нерастворимых оснований — разлагаются при нагревании с образованием оксида и воды:
2Al(OH)3 → Al2O3 + 3H2O
??? 8. а) Приведите примеры реакций, доказывающие свойства гидроксида цинка.
б) В какой из приведенных реакций гидроксид цинка проявляется себя как кислота?
в) В какой из приведенных реакций гидроксид цинка проявляется себя как основание?
г) Напишите уравнение реакции получения гидроксида цинка.
Взаимодействие с простыми веществами
с кислородом
Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.
Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO2):
2Mg + O2 = 2MgO
2Ca + O2 = 2CaO
2Ba + O2 = 2BaO
Ba + O2 = BaO2
Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me3N2.
с галогенами
Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:
Мg + I2 = MgI2 – иодид магния
Са + Br2 = СаBr2 – бромид кальция
Ва + Cl2 = ВаCl2 – хлорид бария
с неметаллами IV–VI групп
Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.
Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C22-, фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:
Остальные металлы II А группы образуют с углеродом ацетилениды:
С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):
с водородом
Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.
Применение оксидов
Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO3 используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.
Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.
Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.
Оксид кремния SiO2 является основным компонентом стекла. Оксид хрома Cr2O3 применяют для производства цветных зелёных стекол и керамики, а за счёт высоких прочностных свойств — для полировки изделий (в виде пасты ГОИ).
Оксид углерода CO2, который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.
Получение
Общим способом получения амфотерных гидроксидов является осаждение разбавленной щёлочью из растворов солей соответствующего амфотерного элемента, например:
- ZnSO4 + 2NaOH ⟶ Zn(OH)2↓ + Na2SO4{\displaystyle {\mathsf {ZnSO_{4}\ +\ 2NaOH\ \longrightarrow \ Zn(OH)_{2}\downarrow \ +\ Na_{2}SO_{4}}}}
В избытке щёлочи начнётся растворение осадка гидроксида:
-
- Zn(OH)2+2NaOH→Na2Zn(OH)4{\displaystyle {\mathsf {Zn(OH)_{2}+2NaOH\rightarrow Na_{2}}}}
В ряде случаев при осаждении образуется не гидроксид, а гидрат оксида соответствующего элемента (например, гидраты оксидов железа(III), хрома(III), олова(II) и др.). Химические свойства таких гидратов по большей части аналогичны свойствам соответствующих гидроксидов.
Какие оксиды реагируют с водой?
Из всех оксидов с водой реагируют только:
1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);
2) все кислотные оксиды, кроме диоксида кремния (SiO2);
т.е. из вышесказанного следует, что с водой точно не реагируют:
1) все малоактивные основные оксиды;
2) все амфотерные оксиды;
3) несолеобразующие оксиды (NO, N2O, CO, SiO).
Примечание:
Оксид магния медленно реагирует с водой при кипячении. Без сильного нагревания реакция MgO с H2O не протекает.
Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.
Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.
Активные основные оксиды, реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K+12O и Ba+2O образуются соответствующие им гидроксиды K+1OH и Ba+2(OH)2:
K2O + H2O = 2KOH – гидроксид калия
BaO + H2O = Ba(OH)2 – гидроксид бария
Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH)2 (как исключение).
Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами. Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.
Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H2S, сернистая H2SO3 и серная H2SO4 кислоты. Cероводородная кислота H2S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO3 с водой можно сразу исключить. Из кислот H2SO3 и H2SO4 серу в степени окисления +6, как в оксиде SO3, содержит только серная кислота H2SO4. Поэтому именно она и будет образовываться в реакции SO3 с водой:
H2O + SO3 = H2SO4
Аналогично оксид N2O5, содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO3, но ни в коем случае не азотистую HNO2, поскольку в азотной кислоте степень окисления азота, как и в N2O5, равна +5, а в азотистой — +3:
N+52O5 + H2O = 2HN+5O3
Исключение:
Оксид азота (IV) (NO2) является оксидом неметалла в степени окисления +4, т.е. в соответствии с алгоритмом, описанным в таблице в самом начале данной главы, его нужно отнести к кислотным оксидам. Однако не существует такой кислоты, которая содержала бы азот в степени окисления +4.
В случае оксида NO2 принято считать, что ему соответствуют сразу две кислоты, поскольку его взаимодействие с водой приводит к одновременному образованию двух кислот:
2NO2 + H2O = HNO2 + HNO3
Свойства амфотерных металлов
Они определены самим понятием амфотерности. В типовом состоянии, то есть обычной температуре и влажности, большая часть металлов представляет собой твердые тела. Ни один металл не подлежит растворению в воде. Щелочные основания проявляются только после определенных химических реакций. В процессе прохождения реакции соли металла вступают во взаимодействие
Надо отметить что правила безопасности требуют особой осторожности при проведении этой реакции
Соединение амфотерных веществ с оксидами или самими кислотами первые показывают реакцию, которая присуща основаниями. В тоже время если их соединять с основаниями, то будут проявляться кислотные свойства.
Нагрев амфотерных гидроксидов вынуждает их распадаться на воду и оксид. Другими словами свойства амфотерных веществ весьма широки и требуют тщательного изучения, которое можно выполнить во время химической реакции.
Свойства амфотерных элементов можно понять, сравнив их с параметрами традиционных материалов. Например, большинство металлов имеют малый потенциал ионизации и это позволяет им выступать в ходе химических процессов восстановителями.
Амфотерные — могут показать как восстановительные, так и окислительные характеристики. Однако, существуют соединения которые характеризуются отрицательным уровнем окисления.
Абсолютно все известные металлы имеют возможность образовывать гидроксиды и оксиды.
Всем металлам свойственна возможность образования основных гидроксидов и оксидов. Кстати, металлы могут вступать в реакцию окисления только с некоторыми кислотами. Например, реакция с азотной кислотой может протекать по-разному.
Амфотерные вещества, относящиеся к простым, обладают явными различиями по структуре и особенностям. Принадлежность к определенному классу можно у некоторых веществ определить на взгляд, так, сразу видно что медь – это металл, а бром нет.
Как отличить металл от неметалла
Главное различие заключается в том, что металлы отдают электроны, которые находятся во внешнем электронном облаке. Неметаллы, активно их притягивают.
Все металлы являются хорошими проводниками тепла и электричества, неметаллы, такой возможности лишены.
Страницы
- Главная страница
- ОСНОВЫ ОБЩЕЙ ХИМИИ
- 1.1 Важнейшие классы неорганических веществ
- 2.1 Вещества. Атомы
- 2.2 Размеры атомов
- 2.3 Молекулы. Химические формулы
- 2.4 Простые и сложные вещества
- 2.5 Валентность элементов
- 2.6 Моль. Молярная масса
- 2.7 Закон Авогадро
- 2.8 Закон сохранения массы веществ
- 2.9 Вывод химических формул
- 3.1 Строение атома. Химическая связь
- 3.2 Строение атома
- 3.4 Строение электронной оболочки атома
- 3.5 Периодическая система химических элементов
- 3.6 Зависимость свойств элементов
- 3.7 Химическая связь и строение вещества
- 3.8 Гибридизация орбиталей
- 3.9 Донорно-акцепторный механизм образования
- 3.10 Степени окисления элементов
- 4.1 Классификация химических реакций
- 4.2 Тепловые эффекты реакций
- 4.3 Скорость химических реакций
- 4.4 Необратимые и обратимые реакции
- 4.5 Общая классификация химических реакций
- НЕОРГАНИЧЕСКАЯ ХИМИЯ
- 5.1 Растворы. Электролитическая диссоциация
- 5.2 Количественная характеристика состава растворов
- 5.3 Электролитическая диссоциация
- 5.4 Диссоциация кислот, оснований и солей
- 5.5 Диссоциация воды
- 5.6 Реакции обмена в водных растворах электролитов
- 5.7 Гидролиз солей
- 6.1 Важнейшие классы неорганических веществ
- 6.2 Кислоты, их свойства и получение
- 6.3 Амфотерные гидроксиды
- 6.4 Соли, их свойства и получение
- 6.5 Генетическая связь между важнейшими классами
- 6.6 Понятие о двойных солях
- 7.1 Металлы и их соединения
- 7.2 Электролиз
- 7.3 Общая характеристика металлов
- 7.4 Металлы главных подгрупп I и II групп
- 7.5 Алюминий
- 7.6 Железо
- 7.7 Хром
- 7.8 Важнейшие соединения марганца и меди
- 8.1 Неметаллы и их неорганические соединения
- 8.2 Водород, его получение
- 8.3 Галогены. Хлор
- 8.4 Халькогены. Кислород
- 8.5 Сера и ее важнейшие соединения
- 8.6 Азот. Аммиак. Соли аммония
- 8.7 Оксиды азота. Азотная кислота
- 8.8 Фосфор и его соединения
- 8.9 Углерод и его важнейшие соединения
- 8.10 Кремний и его важнейшие соединения
- ОРГАНИЧЕСКАЯ ХИМИЯ
- 9.1 Основные положения органической химии. Углеводороды
- 9.2 Электронные эффекты заместителей в органических соединениях
- 9.3 Предельные углеводороды (алканы)
- 9.3.1 Насыщенные УВ. Метан
- 9.4 Понятие о циклоалканах
- 9.5 Непредельные углеводороды
- 9.6 Диеновые углеводороды (алкадиены)
- 9.7 Алкины
- 9.8 Ароматические углеводороды
- 9.9 Природные источники углеводородов
- 10.1 Кислородсодержащие органические соединения
- 10.2 Фенолы
- 10.3 Альдегиды
- 10.4 Карбоновые кислоты
- 10.5 Сложные эфиры. Жиры
- 10.6 Понятие о поверхностно-активных веществах
- 10.7 Углеводы
- 11.1 Амины. Аминокислоты
- 11.2 Белки
- 11.3 Понятие о гетероциклических соединениях
- 11.4 Нуклеиновые кислоты
- 12.1 Высокомолекулярные соединения
- 12.2 Синтетические волокна
Примеры амфотерных гидроксидов
К амфотерным относятся следующие гидроксиды:
большинство гидроксидов d-элементов:
гидроксид хрома(III)Cr(OH)3{\displaystyle {\mathsf {Cr(OH)_{3}}}},
полигидрат оксида железа (III)
Fe(OH)3{\displaystyle {\mathsf {Fe(OH)_{3}}}},
гидроксид меди(II)
Cu(OH)2{\displaystyle {\mathsf {Cu(OH)_{2}}}},
гидроксид цинка
Zn(OH)2{\displaystyle {\mathsf {Zn(OH)_{2}}}},
гидроксид кадмия
Cd(OH)2{\displaystyle {\mathsf {Cd(OH)_{2}}}},
и др.;
ряд гидроксидов p-элементов:
гидроксид алюминия,
Al(OH)3{\displaystyle {\mathsf {Al(OH)_{3}}}},
гидроксид галлия,
Ga(OH)3{\displaystyle {\mathsf {Ga(OH)_{3}}}},
гидрат оксида олова(II),
Sn(OH)2{\displaystyle {\mathsf {Sn(OH)_{2}}}},
гидроксид свинца(II)
Pb(OH)2{\displaystyle {\mathsf {Pb(OH)_{2}}}},
и др.;
из гидроксидов s-элементов:
гидроксид бериллия
Be(OH)2{\displaystyle {\mathsf {Be(OH)_{2}}}};
формально к амфотерным гидроксидам может быть отнесена вода.
Примеры амфотерных гидроксидов
К амфотерным относятся следующие гидроксиды:
большинство гидроксидов d-элементов:
гидроксид хрома(III)Cr(OH)3{\displaystyle {\mathsf {Cr(OH)_{3}}}},
полигидрат оксида железа (III)
Fe(OH)3{\displaystyle {\mathsf {Fe(OH)_{3}}}},
гидроксид меди(II)
Cu(OH)2{\displaystyle {\mathsf {Cu(OH)_{2}}}},
гидроксид цинка
Zn(OH)2{\displaystyle {\mathsf {Zn(OH)_{2}}}},
гидроксид кадмия
Cd(OH)2{\displaystyle {\mathsf {Cd(OH)_{2}}}},
и др.;
ряд гидроксидов p-элементов:
гидроксид алюминия,
Al(OH)3{\displaystyle {\mathsf {Al(OH)_{3}}}},
гидроксид галлия,
Ga(OH)3{\displaystyle {\mathsf {Ga(OH)_{3}}}},
гидрат оксида олова(II),
Sn(OH)2{\displaystyle {\mathsf {Sn(OH)_{2}}}},
гидроксид свинца(II)
Pb(OH)2{\displaystyle {\mathsf {Pb(OH)_{2}}}},
и др.;
из гидроксидов s-элементов:
гидроксид бериллия
Be(OH)2{\displaystyle {\mathsf {Be(OH)_{2}}}};
формально к амфотерным гидроксидам может быть отнесена вода.
Получение
Для получения амфотерных металлов, ученые применяют тот же процесс, что при выделении нерастворимых в воде оснований. Перед проведением работ нужно получить больше информации о взаимодействии амфотерных соединений с щелочами, поскольку с помощью щелочного раствора будет выделяться металл.
Примеры:
- Для получения гидроксида цинка нужно смешать раствор сульфата цинка с гидроксидом натрия.
- Для получения гидроксида алюминия нужно смешать раствор сульфата алюминия с раствором гидроксида калия.
- Для получения трехвалентных гидроксидов хрома, алюминия нужно смешать раствор карбоната с раствором на основе солей этих металлов.
Гидроксид алюминия (Фото: Instagram / ostroukh_roman)