Самые прочные металлы в мире: топ-10

9

9-е место в Топ-10 занимает уран. Его отличительной особенностью является слабая радиоактивность. Уран встречается в природе как в чистом виде, так и в виде составного элемента осадочных пород. Среди основных свойств этого металла необходимо выделить хорошую гибкость и ковкость, пластичность, что позволяет использовать его в разных отраслях промышленности.

Урановые сплавы, подверженные тепловой обработке, характеризуются высокой стойкостью к коррозии; изделия из них не изменяют форму при температурных перепадах. Именно поэтому данный металл до середины 30-х годов прошлого века использовали для изготовления инструментальной стали, но позже от этой технологии отказались.

Классификация металлов

К металлам относятся материалы, обладающие совокупностью механических, технологических, эксплуатационных, физических и химических характерных свойств:

  • механические подтверждают способность к сопротивлению деформации и разрушению;
  • технологические свидетельствуют о способности к разному виду обработки;
  • эксплуатационные отражают характер изменения при эксплуатации;
  • химические показывают взаимодействие с различными веществами;
  • физические указывают на то, как ведет себя материал в разных полях – тепловом, электромагнитном, гравитационном.

Химические, физические и механические свойства тесно взаимосвязаны между собой, так как состав материала устанавливает все остальные его параметры. Например, тугоплавкие металлы являются самыми прочными. Свойства, которые проявляются в состоянии покоя, называются физическими, а под воздействием извне – механическими. Также существуют таблицы классификации металлов по плотности — основному компоненту, технологии изготовления, температуре плавления и другие.

Физические свойства металлов

Твёрдость

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже в таблице приводится твёрдость некоторых металлов по шкале Мооса.

Твёрдость некоторых металлов по шкале Мооса:
Твёрдость Металл
0.2 Цезий
0.3 Рубидий
0.4 Калий
0.5 Натрий
0.6 Литий
1.2 Индий
1.2 Таллий
1.25 Барий
1.5 Стронций
1.5 Галлий
1.5 Олово
1.5 Свинец
1.5 Ртуть(тв.)
1.75 Кальций
2.0 Кадмий
2.25 Висмут
2.5 Магний
2.5 Цинк
2.5 Лантан
2.5 Серебро
2.5 Золото
2.59 Иттрий
2.75 Алюминий
3.0 Медь
3.0 Сурьма
3.0 Торий
3.17 Скандий
3.5 Платина
3.75 Кобальт
3.75 Палладий
3.75 Цирконий
4.0 Железо
4.0 Никель
4.0 Гафний
4.0 Марганец
4.5 Ванадий
4.5 Молибден
4.5 Родий
4.5 Титан
4.75 Ниобий
5.0 Иридий
5.0 Рутений
5.0 Тантал
5.0 Технеций
5.0 Хром
5.5 Бериллий
5.5 Осмий
5.5 Рений
6.0 Вольфрам
6.0 β-Уран

Температура плавления

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.

Плотность

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Пластичность

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.

Электропроводность

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Теплопроводность

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Наименьшая теплопроводность — у висмута и ртути.

Цвет

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Свинцовые сплавы.

Обычный припой (третник) представляет собой сплав примерно одной части свинца с двумя частями олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Сплавы свинца с кадмием, оловом и висмутом могут иметь точку плавления, лежащую значительно ниже точки кипения воды (~70° C); из них делают плавкие пробки клапанов спринклерных систем противопожарного водоснабжения. Пьютер, из которого ранее отливали столовые приборы (вилки, ножи, тарелки), содержит 85–90% олова (остальное – свинец). Подшипниковые сплавы на основе свинца, называемые баббитами, обычно содержат олово, сурьму и мышьяк.

История развития представлений о металлах

См. также: История производства и использования железа

Знакомство человека с металлами началось с золота, серебра и меди, то есть с металлов, встречающихся в свободном состоянии на земной поверхности; впоследствии к ним присоединились металлы, значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь металлов были знакомы человечеству в глубокой древности. Среди древнеегипетских артефактов встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от н. э.

К семи известным металлам уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII века число открытых металлов быстро возрастает и к началу XX столетия доходит до 65, а к началу XXI века — до 96.

Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой металлов; с историей их связаны важнейшие моменты истории химии. Свойства металлов так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо и ртуть составляли одну естественную группу однородных веществ, и понятие о «металле» относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе: образования всего существующего из четырёх элементов (огня, земли, воды и воздуха) уже тем самым указывали на сложность металлов; но эти идеи были слишком туманны и абстрактны. У алхимиков понятие о сложности металлов и, как результат этого, вера в возможность превращать одни металлы в другие, создавать их искусственно, является основным понятием их миросозерцания.

Лишь Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе металлов при обжигании происходит от присоединения к металлам кислорода из воздуха, и таким образом установил, что акт горения металлов есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности металлов был решен отрицательно. Металлы были отнесены к простым химическим элементам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. С созданием периодической системы химических элементов Менделеевым элементы металлов заняли в ней своё законное место.

Виды редких металлов

Редкие сплавы, металлы можно разделить на несколько групп зависимо от химических, физических характеристик.

Легкие

К ним относятся химические элементы 1 и 2 группы периодической таблицы Менделеева. Их главное сходство — малый удельный вес. Представители — цезий, литий, рубидий, бериллий. Вторая похожая особенность — высокая химическая активность. Для получения проводится металлотермия, электролиз.

Тугоплавкие

Переходные элементы, которые находятся в 4, 5 и 6 группе периодической таблицы Менделеева. Внутренние электронные уровни у этих металлов достраиваются при переходе одного элемента к соседнему. Они образуют твердые, тугоплавкие, химически устойчивые соединения с различными металлоидами, которые обладают небольшим атомным радиусом.

Для получения применяется технология порошковой металлургии. Из расходного сырья получается металлический порошок, который прессуется в специальных формах и спекается для получения однородного материала.

Таблица Менделеева (Фото: Instagram / techade.ru)

Рассеянные

Особенность — малое количество минералов, в которых содержатся эти металлы или их полное отсутствие. Чаще подобные химические элементы встречаются в виде изоморфных примесей. Еще реже их можно встретить в небольшой концентрации в сторонних минералах.

Единственный прибыльный способ получения — переработка отходов производства основных металлов.

Редкоземельные

Второе название — лантаноиды. В этой группе находится 15 химических элементов. Они имеют похожее строение атомов, электронных уровней. В природе редкоземельные металлы часто попадаются рядом друг с другом. Первый этап переработки расходного сырья — выделение разных соединений, в основном смесей окислов.

Радиоактивные

В этой группе находятся естественные радиоактивные металлы. Основные из них — актиноиды, актиний, радий, полоний. К подгруппе актиноидов относятся уран, протактиний, торий.

2 Рутений

Рутений серебристого цвета, характеризуется уникальной особенностью – присутствием в составе фрагментов мышечной ткани живых существ. По мнению ученых, именно столь необычный состав повлиял на свойства металла и сделал его сверхпрочным.
Рутений не только прочен и тверд – он еще и химически устойчив, может вступать в комплексные соединения и играет роль катализатора химических реакций. Описанные выше свойства данного металла делают его незаменимым при изготовлении различных проводков и контактов, лабораторной посуды. Востребован металл и в ювелирном деле. Что касается производства самого рутения, то оно практически полностью сосредоточено в Южно-Африканской Республике.

История развития представлений о металлах

См. также: История производства и использования железа

Знакомство человека с металлами началось с золота, серебра и меди, то есть с металлов, встречающихся в свободном состоянии на земной поверхности; впоследствии к ним присоединились металлы, значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь металлов были знакомы человечеству в глубокой древности. Среди древнеегипетских артефактов встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от н. э.

К семи известным металлам уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII века число открытых металлов быстро возрастает и к началу XX столетия доходит до 65, а к началу XXI века — до 96.

Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой металлов; с историей их связаны важнейшие моменты истории химии. Свойства металлов так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо и ртуть составляли одну естественную группу однородных веществ, и понятие о «металле» относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе: образования всего существующего из четырёх элементов (огня, земли, воды и воздуха) уже тем самым указывали на сложность металлов; но эти идеи были слишком туманны и абстрактны. У алхимиков понятие о сложности металлов и, как результат этого, вера в возможность превращать одни металлы в другие, создавать их искусственно, является основным понятием их миросозерцания.

Лишь Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе металлов при обжигании происходит от присоединения к металлам кислорода из воздуха, и таким образом установил, что акт горения металлов есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности металлов был решен отрицательно. Металлы были отнесены к простым химическим элементам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. С созданием периодической системы химических элементов Менделеевым элементы металлов заняли в ней своё законное место.

Топ-10 самых тяжелых металлов в мире

Предлагаю ознакомиться с элементами согласно их рейтингу.

Тантал

Считается редким и не очень тяжелым металлом, он обладает плотностью 16,65 г/см³. Его используют хирурги – он практически не поддается разрушению и ржавчине, легок в обработке.

Уран

Плотность урана – 19,07 г/см³. Его основное отличие от собратьев – природная радиоактивность. В процессе трансформации, которые претерпевают атомы урана, вещество превращается в другой излучающий элемент. Цепочка превращений состоит из 14 этапов, один из них – преобразование в радий, последняя стадия – образование свинца. Правда, для полного перехода урана в свинец понадобится не один миллиард лет.

Вольфрам

Вольфрам (19,25 г/см³) в шутку называют идеальным кандидатом для подделки золотых слитков. Это самый тугоплавкий материал, температура плавления приближена к фотосфере Солнца – 3422 °C. Поэтому он лучше всего подходит для спиралей в лампах накаливания.

Золото

Плотность золота – 19,3 г/см³. Мягкое, тягучее, обладающее хорошей тепло- и электрической проводимостью, оно не боится химического воздействия. Золото находится не только на поверхности Земли. В 5 раз больше его содержится в ядре планеты.

Плутоний

Этот элемент – одна из ступеней радиоактивного преобразования урана. В недрах планеты он тоже есть, но в мизерных количествах. Плотность его составляет 19,7 г/см³. Из-за своей радиоактивности плутоний всегда теплый, при этом плохо проводит ток и тепло.

Нептуний

Это еще одно детище урана, полученное в ходе ядерных реакций. Плотность – 20,25 грамм на кубический сантиметр. Нептуний довольно мягкий и ковкий материал, который медленно вступает в реакцию с воздухом и водой.

Рений

Рений – еще один тугоплавкий, ковкий, стойкий к окислению элемент. Температура плавления – 2000 °C. В общей сложности мировые запасы элемента составляют примерно 17 000 тонн. Плотность рения – 21,03 г/см³. Его используют в медицине, ювелирном деле, вакуумной технике, электронных приборах и металлургии.

Платина

Платина – хоть и не самый тяжелый металл, но довольно близок к этому – 21,45 г/см³. Она используется не только ювелирами, но и хирургами, специалистами в области инвестиций, в химической и стекольной промышленности, автомобильном деле, биомедицине и электронике. Платина исключительно вынослива, а изделия из нее трудно поцарапать. Этот элемент встречается в 30 раз реже золота.

Осмий

Плотность 22,6 г/см³ – самый тяжелый в мире металл, он твердый, но довольно ломкий. Как его ни нагревай, свой блеск и серо-голубоватый оттенок он не потеряет ни при каких условиях. Его трудно обрабатывать, в основном залегает в местах падения метеоритов.

Иридий

Разница между иридием и осмием по плотности – в сотых частях грамма. Иридий тугоплавкий, относится к редким, драгоценным. Не взаимодействует с кислотами, воздухом и водой. Применяется для контроля сварочных швов, а в палеонтологии и геологии используется в качестве индикатора слоя, сформировавшегося после падения метеорита.

Какой сплав считается самым прочным в мире

Металлы вместе с легирующими добавками образуют самый прочный сплав. В первую очередь, это касается твердости.

Кроме того, они отличаются рядом показателей, среди которых тепло и электропроводность. Прочные сплавы востребованы в промышленности.

Особенно это касается самолетостроения, где наряду с прочностью требуется легкость. В таких сплавах нуждается автомобилестроение и судостроение.

О металлах в природе

Металлы разделяются на черные и цветные. Классическим представителем первого вида является железо. Цветные образуют более дорогостоящую группу.

Как производят металлы

Металлы в чистом виде в природе не встречаются. Содержатся они в рудах.

Их производство идет по следующим этапам:

  • определение месторождений;
  • добыча руды:
  • извлечение металла.

Самые прочные из металлов

Прочность — это свойство металла противостоять внешним нагрузкам. Сопротивляемость элемента обеспечивается его внутренней структурой, способной создавать внутреннее напряжение, которое противостоит наружному давлению.

К самым прочным металлам относятся:

  • титан;
  • рений;
  • бериллий;
  • хром;
  • тантал;
  • иридий.

Самый прочный сплав

Самые твердые сплавы в мире — вольфрамовые. Основу составляют порошки, состоящие из нескольких карбидов металлов и кобальта. Смешивание ведется в определенной пропорции. Разработанная учеными технология позволяет получать сплавы высокой степени твердости.

Маркируются такие соединения буквенным обозначением: ВК3, где В —принадлежность к вольфрамовой группе. К — содержание кобальта в процентах.

Физические и химические свойства

Основные физические свойства вольфрамовых сплавов:

  1. Характерной особенностью является красностойкость. Она составляет 800 градусов. Термин означает, что режущая кромка в состоянии выдерживать такую температуру. Это обеспечивается высокой теплопроводностью. Благодаря чему идет отвод тепла.
  2. Высокая твердость, которая составляет 90 единицы по Роквеллу.
  3. Температура плавления достигает 2780 градусов.

Химическая стойкость к внешней среде повышается с увеличением процентного содержания кобальта.

Химические свойства титана

Особенности изготовления и сферы применения

Технология получения твердых сплавов из вольфрама состоит из следующих этапов:

  1. Сначала формируется грубый порошок вольфрама, который затем измельчается и просеивается.
  2. Таким же образом получаются порошки карбида вольфрама и кобальта.
  3. Идет их перемешивание с добавлением клея. В этом качестве выступает каучук, растворенный в бензине.
  4. Смесь подсушивается и прессуется.
  5. Технологический процесс заканчивается двумя спеканиями.

Твердый материал используется в изготовлении следующих изделий:

  • резцов для токарных станков;
  • клейм;
  • валки для прокатки;
  • шариков и обоймы для подшипников.
  • напайки для инструмента горнодобывающего оборудования;

Любое производство нуждается в обработке изделий. Чтобы обеспечить этот процесс, необходим материал более высокой твердости. Эту функцию выполняют твердые сплавы.

Какой сплав считается самым прочным в мире Ссылка на основную публикацию

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector