Анод на аккумуляторе и в других приборах, процессы на аноде и знак анода

Содержание:

Использование тестера и пробника

Первый наиболее точный способ основан на обычной прозвонке, которую выполняют электрическим тестером и пробником.

Рисунок 1. Проверка полярности светодиода мультиметром и пробником

При работе с мультиметром прибор переключают в режим измерения сопротивления, после чего подключают к нему СД. Исправный диод демонстрирует высокое сопротивление при одном подключении щупов и довольно низкое конечное сопротивление при противоположном. Можно констатировать, что плюсовый вывод тестера во втором случае подключен к аноду светодиода.

Электрический пробник собирается из набора трех пальчиковых батареек АА и индикатора, функции которого возлагаются на лампу от карманного фонарика или иной заведомо исправный СД, причем последний подключен своим анодом к плюсовому выводу батареи. При зажигании тестируемого светодиода тот его вывод, который подключен минусу батарейки, является катодом.

Оба варианта тестирования показаны в правой части рисунка 1.

Особенности и модификация

Категория светодиодов
АЛ307М имеет четыре оттенка свечения. Это красный, желтый, оранжевый и зеленый.
При этом они имеют цветной металлический, пластмассовый или металлостеклянный
корпус, соответствующий спектру излучения – в рассеивающем или полностью
прозрачном компаунде. Светодиодный кристалл покрыт стеклянной линзой с диспергатором
овальной формы, диаметром 5 мм у основания. Выводные проводники изготовлены из
гибкой проволоки и имеют одно направление. Анод всегда длиннее и немного толще
катода. Последний также может иметь небольшой срез.

В маркировке первая
буква, идущая после числового значения «307», означает характерный цвет
светового потока:

  1. Красный – А, Б, К, Л.
  2. Желтый – Д, Е, Ж.
  3. Оранжевый – О, Р, М.
  4. Зеленый – В, Г, Н, П.

Основные
светотехнические параметры для существующих модификаций светодиода АЛ307
представлены в следующей таблице:

Чтобы светодиод модели АЛ307 работал, необходимо соблюдать полярность при подключении. Кроме того, подсоединение непосредственно к сети запрещено. В схеме обязательно должен быть токоограничивающий резистор. В каждой последовательной или параллельной цепочке должен располагаться отдельный подобный стабилизирующий модуль.

Использование тестера и пробника

Первый наиболее точный способ основан на обычной прозвонке, которую выполняют электрическим тестером и пробником.

Рисунок 1. Проверка полярности светодиода мультиметром и пробником

При работе с мультиметром прибор переключают в режим измерения сопротивления, после чего подключают к нему СД. Исправный диод демонстрирует высокое сопротивление при одном подключении щупов и довольно низкое конечное сопротивление при противоположном. Можно констатировать, что плюсовый вывод тестера во втором случае подключен к аноду светодиода.

Электрический пробник собирается из набора трех пальчиковых батареек АА и индикатора, функции которого возлагаются на лампу от карманного фонарика или иной заведомо исправный СД, причем последний подключен своим анодом к плюсовому выводу батареи. При зажигании тестируемого светодиода тот его вывод, который подключен минусу батарейки, является катодом.

Оба варианта тестирования показаны в правой части рисунка 1.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.

Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

Меняем выводы и убеждаемся, что диод рабочий.

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

Таким же образом проверяем все оставшиеся диоды.

Получение светодиода определенного цвета

Для получения светодиода того или иного цвета используется три технологии – покрытие люминофором, использование RGB светодиодов и применение разных полупроводниковых материалов.

Покрытие люминофором

Люминофором называется вещество, которое может преобразовать поглощаемую энергию в свет. Получение светодиодов путем нанесения люминофора на поверхность имеет свои преимущества:

  • простота конструкции;
  • низкая стоимость производства;
  • экономия.

К недостаткам относятся:

  • снижение светоотдачи из-за потери световой энергии;
  • влияние на цветовую температуру;
  • быстрее стареет при эксплуатации.

Люминофор используется в белых светодиодах. С помощью люминофорного покрытия создаются диоды с различной цветовой температурой.

RGB-технология

Смешивание цветов по RGB технологии также помогает получить светодиоды различного спектра (обычно используются для белого). На матрице устанавливаются 3 монокристалла, каждый из них дает свой спектр RGB. Путем конструирования оптической системы цвета смешиваются и дают нужный оттенок.

Преимущества:

  • возможность поочередного включения того или иного цвета вручную или автоматически;
  • можно вызывать разные оттенки, меняющиеся по времени;
  • создание эффектных осветительных конструкций для рекламы и дизайна.

Недостатки:

  • неравномерность светового пятна;
  • неравномерность нагрева и отвода тепла.

Отрицательные качества вызваны расположением кристаллов полупроводника на поверхности. Из-за этого качественно организовать RGB модель сложно.

Применение различных примесей и полупроводников

Работа светодиода напрямую зависит от материала, из которого он выполнен. Использование полупроводников с различной шириной запрещенной зоны можно добиться нужного света от диода. От ширины запрещенной зоны зависит длина волны.

Для получения приборов в инфракрасном и красном цветовом спектре используются твердые растворы на основе арсенида галлия. Оранжевые, желтые и зеленые цвета получаются при помощи фосфида галлия. Синие, фиолетовые и ультрафиолетовые изготавливаются на основе нитрида галлия.

Органические светодиоды — OLED

Основная статья: OLED

Многослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.

Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов (2 года) непрерывной работы.

Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, OLED-телевизорах, для создания приборов ночного видения.

Чтобы светодиод светился

Через него необходимо пропустить электрический ток в направлении одной стороны – от анода к катоду. При этом его невозможно подключить напрямую к источнику питания, поскольку он немедленно сгорит. Чтобы обеспечить нормальную работу, необходим ограничитель, которым служит резистор, устанавливаемый в цепь последовательно со светодиодом.

По цветам светодиоды разделяются на красный, желтый, зеленый, голубой, фиолетовый, белый. Цвет можно определить, лишь включив его, поскольку почти все они изготовлены из прозрачного бесцветного пластика.

Кроме того их также различают по номинальному току потребления. В основном, широкое распространение получили изделия с потребляемым током 10 и 20 миллиампер.

Идеальный источник питания для светодиодов – блок питания компьютера. При использовании в качестве обычного освещения применяются разъемы, на выходе у которых 5 или 12 вольт. Когда они используются в качестве светомузыки, то они подключаются через LPT-порт компьютера.

Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.

Вот они, LED SMD2835. Маленькие, но света от них достаточно

Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

Параметр Китайский 2835 2835 0,2W 2835 0,5W 2835 1W
Сила светового потока, Лм 8 20 50 100
Потребляемая мощность, Вт 0,09 0,2 0,5 1
Температура, в градусах С +60 +80 +80 +110
Ток потребления, мА 25 60 150 300
Напряжение, В 3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 120.

На таких элементах делается лампа «кукуруза»

Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

Параметр Показатель
Сила светового потока, Лм 45-50
Потребляемая мощность, Вт 0,5
Диапазон рабочих температур, в градусах С От -40 до +80
Номинальный ток, мА 150
Рабочее напряжение, В 3,1-3,2
Угол освещения 120 градусов

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.

Элементы на ленте могут располагаться и в 2 ряда для яркости

Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

Модификация XM-L XR-E, XP-G, XP-E, XP-C
Сила светового потока, Лм/вт T5 (от 260 до 280) T6 (от 280 до 300) U2 (от 300 до 320) Q2 (от 87,4 до 93,9) Q3 (от 93,9 до 100) Q4 (от 100 до 107) Q5 (от 107 до 114) R2 (от 114 до 122)

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.

Нить накала постепенно уходит в историю

Предлагаем Вам небольшое видео на эту тему:

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

Package – тип корпуса. Корпуса GBU выглядят вот так.

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) – максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”

Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2)

Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

Разновидности светодиодов

Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.

В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.

Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.

По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:

  • DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
  • «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
  • SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
  • COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.

Полярность светодиода как определить плюс и минус

При использовании светодиодов в создании различных схем их необходимо установить правильно. Пайка в большинстве случаев проблем не создает, определить полярность немного сложнее, если нет опыта работы с тестирующим оборудованием.

Как
определить полярность тестером мультиметром

Проще всего проверить светодиод
мультиметром. При подключении щипов в режиме «прозвонка» к электродам можно
получить 2 результата: светодиод светится и выдает на экран число, зависящее от
цвета излучения, или показывает очень большое число. При первом варианте можно
сделать вывод, что источник света исправен и подключен к мультиметру правильно
(плюс к плюсу, минус к минусу).

Второй метод использования мультиметра –
переключение на проверку сопротивления. Если красный щуп касается плюса, черный
– минуса, на экране появляется значение в пределах 1600–1800.

Если у мультиметра есть отсек PNP, для определения полярности светодиода требуются отсеки E (эмиттер – «+») и C (коллектор – «-»). Источник света светится, если катод вставлен в «C», анод – в «E».

Если используется отсек мультиметра NPN, светодиод светиться, если ножки меняются местами.

По
внешнему виду

В производстве светодиодов используются разные корпусы. Широко применяются DIP-элементы с цилиндрическим корпусом различного диаметра. Изготавливается множество SMD для поверхностного монтажа. Свехяркие источники света отличаются размерами корпусов и кристаллов. Опытный радиолюбитель определяет катод и анод по внешним признакам.

У DIP-элементов:

  • длиннее ножка анода;
  • силуэт в колбе меньше у анода, форма катода напоминает флажок;
  • у источника с мощностью более 1 Вт на ножке анода есть маркировка «+».

У SMD-светодиодов:

  • катод
    обозначается срезом на корпусе;
  • теплоотвод
    на обратной стороне корпуса располагается ближе к аноду;
  • пиктограмма «П»
    к аноду обращена верхней полкой, верх пиктограммы «Т» обращен к катоду.

Некоторые производители наносят на корпуса SMD-светодиодов определенные символы, которые позволяют определить полярность.

Важно! Существуют SMD, изготовленные по другому принципу (некоторые производители не соблюдают стандарты). На сложных моделях всегда имеются обозначения «+» и «−»

Любая неполупроводниковая радиолампа (стабилитрон)
состоит из анода, катода и сетки. Катодом всегда служит разогретый электрод,
изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду
(коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением.

Для определения работоспособности стабилитрона
используется мультиметр в режиме прозвона. Если положительный щуп приложить к
аноду, отрицательный – к катоду, стабилитрон откроется, на экране будет видно
значение напряжения. Если поменять щупы местами, стабилитрон закроется, на
экране появится цифра 1.

Путем
подачи питания

Чтобы использовать тестирование с
помощью подключения к питанию, требуется источник с напряжением 3-6 В и
резистор с любой мощностью на 300–470 Ом. Резистор припаивается к одной ножке
мультиметра. Затем нужно коснуться щупами выводов. Светодиод светится, если
плюсовой щуп касается анода, минусовой – катода.

Технической
документации

Большой объем информации (размеры,
цоколевку, электрические параметры) о полупроводниковом источнике света предоставляют
производители в технической документации. Она выдается при покупке больших
партий электронных элементов вместе с другой сопроводительной документацией. Если
покупать один или несколько светодиодов, продавец техдокументацию не
предоставит.

Если известна марка изделия, данные
можно найти в справочниках и сети интернет.

На схеме полупроводниковый источник света обозначается пиктограммой в форме треугольника, на вершине которого начерчена линия, перпендикулярная основанию.  Вершина направлена на катод. Для обозначения светодиода используются 2 стрелки над изображением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector