Цементит

Карбид железа

Графический вид составляющей части диаграммы железо-углерод: Fe3C. Вещество называется карбидом железа, или цементитом. Для него характерно:

  1. Содержание углерода 6,67 %.
  2. Удельный вес — 7,82 %.
  3. Кристаллическая решетка имеет ромбическую форму, состоящую из октаэдров.
  4. Плавление происходит при температуре ≈1260° С.
  5. Низкие ферромагнитные свойства при пониженной температуре.
  6. Твердость – 800 НВ.
  7. Пластичность практически равна нулю.
  8. Карбид железа образует твердые растворы замещения, в которых атомы углерода замещаются атомами неметаллов (азотом), а атомы железа – металлами (хромом, вольфрамом, марганцем). Этот твердый состав называется легированным.

Как уже отмечалось выше, цементит – это нестабильная фаза, а графит – стабильная. Поскольку первое вещество представляет собой неустойчивое соединение, распадаясь при определенных температурных условиях.

В диаграмме железо-углерод есть такие состояния:

  • жидкая фаза;
  • феррит;
  • аустенит;
  • цементит;
  • графит;
  • перлит;
  • ледебурит.

Рассмотрим каждую из них подробно.

Химические свойства

Серый, относительно твёрдый, термически устойчивый. Не реагирует с водой, щелочами, гидратом аммиака.

разлагается при температуре выше 1650 °C:

Fe3C →>1650oC3Fe+C{\displaystyle {\mathsf {Fe_{3}C\ {\xrightarrow {>1650^{o}C}}3Fe+C}}}

Разлагается кислотами (конц.):

Fe3C+6HCl →3FeCl2+C↓+3H2↑{\displaystyle {\mathsf {Fe_{3}C+6HCl\ {\xrightarrow {}}3FeCl_{2}+C{\downarrow }+3H_{2}{\uparrow }}}}
Fe3C+22HNO3 →3Fe(NO3)3+CO2↑++13NO2↑+11H2O{\displaystyle {\mathsf {Fe_{3}C+22HNO_{3}\ {\xrightarrow {}}3Fe(NO_{3})_{3}+CO_{2}{\uparrow }++13NO_{2}{\uparrow }+11H_{2}O}}}

Реагирует с кислородом:

Fe3C+3O2 →600−700oCFe3O4+CO2{\displaystyle {\mathsf {Fe_{3}C+3O_{2}\ {\xrightarrow {600-700^{o}C}}Fe_{3}O_{4}+CO_{2}}}}
4Fe3C+Fe3O4 →1000−1100oC15Fe+4CO{\displaystyle {\mathsf {4Fe_{3}C+Fe_{3}O_{4}\ {\xrightarrow {1000-1100^{o}C}}15Fe+4CO}}}

Полиморфные превращения

Более подробно о каждой фазе чуть ниже в статье. А если кратко, то осуществление главных превращений происходит при особых температурах.

Состояние железа обозначают как α-феррум (при температуре менее 911° С) . Кристаллическая решетка – объемный гранецентрированный куб. Или ОЦК. Дистанция между атомами такой решетки достаточно высокая.

Железо приобретает модификацию гамма, то есть обозначается как γ-феррум (911-1392° С) . Кристаллическая решетка – гранецентрированный куб (ГЦК). В этой решетке дистанция между атомами ниже, чем в ОЦК.

При переходе α-феррума в γ-феррум объем вещества становится меньшим. Причиной тому является кристаллическая решетка – ее вид. Потому что решетка ГЦК имеет более упорядоченное состояние атомов, чем ОЦК.

Если переход осуществляется в обратном направлении – из γ-феррума в α-феррум, то объем сплава увеличивается.

Когда температура достигает значения 1392° С (но менее температуры плавления железа 1539° С), то α-феррум превращается в δ-феррум, но это не является ее новой формой, а лишь разновидностью. К тому же δ-феррум является неустойчивой структурой.

Высокоуглеродистая сталь

От содержания углерода в составе зависят характеристики стали. Он может содержаться в сплаве в количестве от 0,02 до 2,14%. К высокоуглеродистым относятся стали, где количество углерода более или равно показателю 0,6 %. С увеличением количества углерода в составе стали, увеличивается содержание цементита, а феррита уменьшается. Металл становится более твердым и прочным, но теряет пластичность. Такая закономерность применима для стали с содержанием углерода не более 1 %. Если же его процент в составе повышается, то формируется сетка вторичного цементита, что приводит к снижению прочности.

Качество высокоуглеродистой стали, ее свойства зависят от количества вредных примесей. Чем их меньше, тем выше качество металла. Большое количество примесей характерно для другого вида сплава, который называется легированной сталью. Из-за невозможности удаления примесей из сплава по техническим причинам, позволяет входить в состав стали:

  • Водороду.
  • Азоту.
  • Кислороду.
  • Кремнию.
  • Марганцу.
  • Фосфору.
  • Сере.

Присутствие данных элементов объясняется методом, которым выплавлялась сталь: кислородно-конвертерным, мартеновским или вакуумным. Углерод же добавляется в сплав намеренно, при его низких исходных показателях. Наличие марганца в стали увеличивает ее прокаливаемость, значительно повышает прочность и износостойкость, устраняет вредное влияние серы, из-за большого количества которой при ковке металл образует трещины. Поэтому марганец присутствует практически во всех типах стали.

При повышении в составе металла углерода меняются и другие свойства сплава. Снижается его ковкость и увеличивается электрическое сопротивление. При очень высоком содержании углерода металл становится хрупким. Не случайно, при содержании углерода в составе более 2,4%, металлические сплавы относят к чугунам. Эти материалы хуже прочих обрабатываются резанием и давлением, у них снижен показатель жидкотекучести. По этой причине конструкционные изделия и детали из такой стали не изготавливают. Она применяется для производства деталей методом отливки, также из такой стали изготавливают проволоку, которую обрабатывают методом штамповки.

Эвтектоидный перлит

Содержание углерода, при котором аустенит имеет минимальную температуру, называется эвтектоидным содержанием (0,77 % углерода по массе для случая метастабильной диаграммы состояния). Смесь ферритной и цементитной фаз при этом составе углерода, которая образуется при медленном охлаждении имеет характерную пластинчатую структуру, которую называют перлитом. Перлит представляет собой совокупность чередующихся пластин феррита и цементита. Эти пластины после выдержки при температуре близкой к А1 огрубляются («сфероидизируются») в цементитные частицы, распределенные в ферритной матрице.

Структурные составляющие железоуглеродистых сплавов

Основными компонентами, от которых зависит структура и свойства железоуглеродистых сплавов, являются железо и углерод. Чистое железо – металл серебристо-белого цвета; температура плавления 1539°С. Железо имеет две полиморфные модификации: α и γ. Модификация α существует при температурах ниже 911°С и выше 1392°С; γ-железо – при 911-1392°С.

В зависимости от температуры и концентрации углерода железоуглеродистые сплавы имеют следующие структурные составляющие.

  1. Феррит (Ф) – твердый раствор внедрения углерода в α-железе. Растворимость углерода в α-железе при комнатной температуре до 0,005%; наибольшая растворимость – 0,02% при 727°С. Феррит имеет незначительную твердость (НВ 80-100) и прочность (σв=250 МПа), но высокую пластичность (δ=50%; φ=80%).
  2. Аустенит (А) – твердый раствор внедрения углерода в γ-железе. В железоуглеродистых сплавах он может существовать только при высоких температурах. Предельная растворимость углерода в γ-железе 2,14% при температуре 1147°С и 0,8% – при 727°С. Эта температура является нижней границей устойчивого существования аустенита в железоуглеродистых сплавах. Аустенит имеет твердость НВ 160-200 и весьма пластичен (δ=40-50%).
  3.  Цементит (Ц) – химическое соединение железа с углеродом (карбид железа Fe3C). В цементите содержится 6,67% углерода. Температура плавления цементита около 1600°С. Он очень тверд (НВ~800), хрупок и практически не обладает пластичностью. Цементит неустойчив и в определенных условиях распадается, выделяя свободный углерод в виде графита по реакции Fe3C→3Fe+C.
  4. Графит – это свободный углерод, мягок (НВ 3) и обладает низкой прочностью. В чугунах и графитизированной стали содержится в виде включений различных форм (пластинчатой, шаровидной и др.). С изменением формы графитовых включений меняются механические и технологические свойства сплава.
  5. Перлит (П) – механическая смесь (эвтектоид, т. е. подобный эвтектике, но образующийся из твердой фазы) феррита и цементита, содержащая 0,8% углерода. Перлит может быть пластинчатым и зернистым (глобулярным), что зависит от формы цементита (пластинки или зерна) и определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет предел прочности σв=800 МПа; относительное удлинение δ=15%; твердость НВ 160. Перлит образуется следующим образом. Пластинка (глобуль) цементита начинает расти или от границы зерна аустенита, или центром кристаллизации является неметаллическое включение. При этом соседние области обедняются углеродом и в них образуется феррит. Этот процесс приводит к образованию зерна перлита, состоящего из параллельных пластинок или глобулей цементита и феррита. Чем грубее и крупнее выделения цементита, тем хуже механические свойства перлита.
  6. Ледебурит (Л) – механическая смесь (эвтектика) аустенита и цементита, содержащая 4,3% углерода. Ледебурит образуется при затвердевании жидкого расплава при 1147°С. Ледебурит имеет твердость НВ 600-700 и большую хрупкость. Поскольку при температуре 727°С аустенит превращается в перлит, то это превращение охватывает и аустенит, входящий в состав ледебурита. Вследствие этого при температуре ниже 727°С ледебурит представляет собой уже не смесь аустенита с цементом, а смесь перлита с цементитом.

Помимо перечисленных структурных составляющих в железоуглеродистых сплавах могут быть нежелательные неметаллические включения: окислы, нитриды, сульфиды, фосфиды – соединения с кислородом, азотом, серой и фосфором. На их основе могут образовываться новые структурные составляющие, например фосфидная эвтектика (Fe+Fe3P+Fe3C) с температурой плавления 950°С. Она образуется при большом содержании фосфора в чугуне. При содержании фосфора около 0,5-0,7% фосфидная эвтектика в виде сплошной сетки выделяется по границам зерен и повышает хрупкость чугуна.

AS → (ФР + ЦК) .

Эвтектическая смесь аустенита и цементита называется ледебуритом (Л), а эвтектоидная смесь феррита и цементита – перлитом (П). Ледебурит содержит 4,3 % углерода. При охлаждении ледебурита ниже линий PSK входящий в него аустенит превращается в перлит и при нормальной температуре ледебурит представляет собой смесь перлита и цементита и называется ледебуритом превращенным (Л пр). Цементит в этой структурной составляющей образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита объясняет его большую твердость (HB 700) и хрупкость.

Перлит содержит 0,8 % углерода. В зависимости от формы частичек цементит бывает пластинчатый и зернистый. Является прочной структурной составляющей с твердостью (HB210).

Линии диаграммы состояния Fе – Fе3C

Линии диаграммы представляют собой совокупность критических точек сплавов с различным составом, характеризующих превращения в этих сплавах при соответствующих температурах.

Рассмотрим значение линий диаграммы при медленном охлаждении.

ACD – линия ликвидус. Выше этой линии все сплавы находятся в жидком состоянии.

AECF – линия солидус. Ниже этой линии все сплавы находятся в твердом состоянии.

АС – из жидкого раствора выпадают кристаллы аустенита.

CD – линия выделения первичного цементита.

AE – заканчивается кристаллизация аустенита.

ECF – линия эвтектического превращения.

GS – определяет температуру начала выделения феррита из аустенита (910-727 ºC).

GP – определяет температуру окончания выделения феррита из аустенита.

PSK – линия эвтектоидного превращения.

ES – линия выделения вторичного цементита.

PQ – линия выделения третичного цементита.

Области диаграммы состояния Fe – Fe3C

Линии диаграммы: делят все поле диаграммы на области равновесного существования фаз. Каждой области диаграммы соответствует определенное структурное состояние, сформированное в результате происходящих в сплавах превращений.

I – Жидкий раствор (Ж).

II –Жидкий раствор (Ж) и кристаллы аустенита (А).

III – Жидкий раствор (Ж) и кристаллы цементита первичного (ЦI).

IV – Кристаллы аустенита (А).

V – Кристаллы аустенита (А) и феррита (Ф).

VI – Кристаллы феррита (Ф).

VII – Кристаллы аустенита (А) и цементита вторичного (ЦII).

VIII – Кристаллы феррита (Ф) и цементита третичного (ЦIII).

IX – Кристаллы феррита (Ф) и перлита (П).

X – Кристаллы перлита (П) и цементита вторичного (ЦII).

XI – Кристаллы аустенита (А), ледебурита (Л) и цементита вторичного (ЦII).

XII – Кристаллы перлита (П), цементита вторичного (ЦII) и ледебурита превращенного(Л пр).

XIII –Кристаллы ледебурита и цементита первичного (ЦI).

XIV – Кристаллы цементита первичного (ЦI)перлита (П) и ледебурита превращенного (Л пр).

СОДЕРЖАНИЕ ОТЧЕТА

1. Название работы.

2. Цель работы.

3. Диаграмма состояния Fe – Fe3C с обозначением фаз и структурных состовляющих по всем областям диаграммы.

4. Характеристика линий и структурных составляющих железоуглеродистых сплавов.

5. Подробное описание изменений структуры при медленном охлаждении контрольного сплава. (Фрагмент диаграммы с контрольным сплавом).

Рис. 2. Фрагмент диаграммы состояния Fe – Fe3C с нанесенной ординатой

состава сплава, содержащего 1,3 % C.

6. Схема микроструктуры контрольного сплава при нормальной температуре.

7. Выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Что такое фаза?

2. Что такое аустенит?

3. Что такое феррит?

4. Что такое цементит?

5. Какими линиями диаграммы ограничивается температурный интервал первичной кристаллизации?

6. В чем состоит сущность эвтектического превращения?

7. В чем состоит сущность эвтектоидного превращения?

8. Что такое ледебурит?

9. Что такое перлит?

10. На какой линии происходят эвтектические превращения?

11. На какой линии происходят эвтектоидные превращения?

12. Линия выделения первичного цементита?

13. Линия выделения вторичного цементита?

14. Линия выделения третичного цементита?

15. Назовите фазы железоуглеродистых сплавов.

16. Максимальное растворение углерода в Feα?

17. Максимальное растворение углерода в Feγ?

18. Содержание углерода в цементите?

19. При какой температуре происходит эвтектическое превращение?

20. При какой температуре происходит эвтектоидное превращение?

ВАРИАНТЫ КОНТРОЛЬНЫХ СПЛАВОВ

№ п/п

% С

№ п/п

% С

№ п/п

% С

1

0,2

11

5,1

21

1,2

2

1,1

12

2,8

22

3,5

3

3,0

13

1,1

23

4,3

4

4,3

14

0,45

24

5,5

5

5,0

15

1,7

25

0,15

6

0,02

16

1,0

26

0,8

7

0,35

17

4,5

27

0,9

8

0,8

18

2,7

28

2,4

9

1,3

19

0,7

29

4,7

10

2,5

20

0,4

30

1,2

Классификация сталей

Стали характеризуются или классифицируются по множеству признаков:

Классификация по химическому составу

  • углеродистые стали — классифицируются в зависимости от содержания углерода в %:
    • низкоуглеродистые (< 0,25 %C)
    • среднеуглеродистые (0,25-0,65 %C)
    • высокоуглеродистые (> 0,65 %C)
  • легированные стали — классифицируются в зависимости от суммарного содержания легирующих элементов в %:
    • низколегированные (< 2,5%)
    • среднелегированные (2,5-10 %)
    • высоколегированные (> 10 %)

Если содержание Fe меньше 45 %, то это сплав, на основе элемента самого высокого содержания. Если содержание Fe больше 45 %, то это сталь.

Классификация по назначению

  • конструкционные – применяются для изготовления деталей машин и механизмов, содержание углерода <0,8%. Конструкционные подразделяются на цементуемые, с содержанием углерода <0,3% и улучшаемые, с содержанием углерода >0,3%. Основную классификацию и группы конструкционных сталей можно посмотреть здесь
  • инструментальные – применяются для изготовления мерительного, режущего инструмента, штампов горячего и холодного деформирования. Содержание углерода >0,8%;
  • с особыми свойствами: электротехнические, с особыми магнитными свойствами, жаропрочные, износостойкие и др.

Классификация по структуре

Классификация по Обергофферу — по структуре в равновесном состоянии

Изначально эта классификация содержала только 4 типа сталей:

  • доэвтектоидные
  • эвтектоидные
  • заэвтектоидные
  • ледебуритные (имеющие в литом состоянии эвтектику)

Позже были внесены дополнения:

  • ферритные
  • аустенитные

Равновесное состояние — состояние сплава или стали после медленного охлаждения, чаще всего после отжига

Классификация по Гийе — по структуре после нормализации (нагрева и охлаждения на воздухе)

  • перлитные
  • мартенситные
  • ферритные
  • аустенитные
  • карбидные

Также могут быть смешанные классы: феррито-перлитный, аустенитно-ферритный и т.д.

Классификация сталей по качеству

Количественным показателем качества является содержания вредных примесей- серы и фосфора:

  • обыкновенного качества (S≤0,05, P≤0,04)
  • качественные стали (S, P ≤0,035)
  • высококачественные (S, P ≤0,025)
  • особовысококачественные (S≤0,015, P≤0,025)

Расширенные характеристики и свойства (технологические, физические… химический состав) некоторых марок сталей смотрите здесь.

Классификация и маркировка чугунов

Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве.

Классификация чугунов

В зависимости от состояния углерода в чугуне, его подразделяют на следующие виды:

белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида

Такой чугун может быть доэвтектическими и заэвтектическими, а разделяет их эвтектический чугун (4,31% С). Структура доэвтектического чугуна – перлит, вторичный цементит и ледебурит, заэвтектического – первичный цементит с ледебуритом.

  • графитизированный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава. Такие чугуны подразделяют на:
    • серые — пластинчатая или червеобразная форма графита (ЧПГ)
    • высокопрочные — с шаровидным графитом (ЧШГ)
    • ковкие — хлопьевидный графит (ЧХГ)
    • чугун с вермикулярным графитом (ЧВГ) — имеет промежуточные свойства между СЧ и ВЧ. По форме графита напоминает СЧ, но имеет более толстые и более короткие пластины с округленными концами

Еще чугуны классифицируются по основе, в которой расположен графит. Основа может быть перлитной, ферритной, феррито-перлитной.

Маркировка чугунов

Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления δв при растяжении в МПа-10. Серый чугун обозначают буквами «СЧ» (ГОСТ 1412-85), высокопрочный — «ВЧ» (ГОСТ 7293-85), ковкий — «КЧ» (ГОСТ 1215-85).

Пример маркировки

СЧ10 — серый чугун с пределом прочности при растяжении 100 МПа;
ВЧ70 — высокопрочный чугун с сигма временным при растяжении 700 МПа;
КЧ35 — ковкий чугун с δв растяжением примерно 350 МПа.

Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ — антифрикционный чугун: С — серый, В — высокопрочный, К — ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79.

Чугуны специального назначения

К этой группе чугунов относятся жаростойкие (ГОСТ 7769—82), жаропрочные и коррозионностойкие (ГОСТ 11849—76) чугуны. Сюда же можно отнести немагнитные, износостойкие и антифрикционные чугуны.

Жаростойкими являются серые и высокопрочные чугуны, легированные кремнием (ЧС5) и хромом (4Х28, 4Х32). Высокой термо- и жаростойкостью обладают аустенитные чугуны: высоколегированный никелевый серый ЧН15Д7 и с шаровидным графитом ЧН15ДЗШ.

К жаропрочным относятся аустенитные чугуны с шаровидным графитом ЧН19ХЗШ и ЧН11Г7Ш.

В качестве коррозионностойких применяют чугуны, легированные кремнием (ферросилиды) — ЧС13, ЧС15, ЧС17 и хромом — 4Х22, 4Х28, 4Х32. Для повышения коррозионной стойкости кремнистых чугунов их легируют молибденом (4С15М4, 4С17МЗ — антихлоры). Высокой коррозионной стойкостью в щелочах обладают никелевые чугуны, например аустенитный чугун 4Н15Д7.

В качестве немагнитных чугунов также применяются аустенитные чугуны.

К износостойким чугунам относятся половинчатые и отбеленные чугуны. К износостойким половинчатым чугунам относится, например, серый чугун марки И4НХ2, легированный никелем и хромом, а также чугуны И4ХНТ, И4Н1МШ (с шаровидным графитом).

Критические температуры стали

Наиболее важные границы однофазных областей имеют специальные названия, Они включают (в международных обозначениях):

  • А1 – эвтектоидная температура, которая является минимальной температурой для аустенита;
  • А3 – низкотемпературная граница аустенита при низком содержании углерода (граница между областями «гамма-железо» и «гамма-железо + феррит»);
  • Асm – противоположная граница аустенитной области при высоком содержании углерода (граница между областями «гамма-железо» и «гамма-железо + цементит).

Иногда к обозначениям этих температур добавляют буквы c, e и r, например, Ас1, Ас3 и Аccm. Буква с обозначает, что фазовые превращения происходят при нагреве, буква e – при равновесии фаз, а буква r – при охлаждении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector